
 Advanced search

Linux Journal Issue #38/June 1997

Features

Who Is At the Door: The SYN Denial of Service by Douglas L. Stewart,
P. Tobin Maginnis and Thomas Simpson

What SYN really is, why it's needed in TCP/IP, why the denial of
service attack works and how to prevent it.

Network Management & Monitoring with Linux by David Guerrero
Monitoring network activity is a necessity for today's managers.
Here are some handy and easily accessible tools for doing so.

News & Articles

Ghosting onto the Net by Scott Steadman
Consistent Keyboard Configuration by John F. Bunch

Reviews

Product Reviews Wabi 2.2 by Dwight L Johnson
Product Reviews OSS/Linux Sound Driver by Jeff Tranter
Book Reviews Linux in a Nutshell by Sid Wentworth
Book Reviews Programming with GNU Software by Randyl Britten

WWWsmith

Using MSQL in a Web-Based Production Environment by B. Scott
Burkett
At the Forge Creating a Multiple Choice Quiz System by Reuven
Lerner

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2140.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2095.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/0138.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2076.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2165.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2195.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2207.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2224.html

Marketsmith by Doc Searls

Columns

Letters to the Editor
From the Editor LG and IELG
Stop the Presses Uniforum '97 by Marjorie Richardson
Linux Means Business Traveling Linux: An Implementation
Experience by Maurizio Cachia
Kernel Korner Booting the Kernel by Alessandro Rubini
New Products
Best of Technical Support

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2240.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2271.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2274.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2283.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/1288.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/1288.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2239.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2249.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2268.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Who Is at the Door: The SYN Denial of Service

Douglas L. Stewart

P. Tobin Maginnis

Thomas Simpson

Issue #38, June 1997

How to survive the SYN attack on a TCP/IP protocol weakness.

Over the past few months, a denial of service attack, known as the “SYN Attack”,
has become notorious. This attack can prevent access to your mail, WWW and
other critical servers. The attack was first described in a paper by Robert Morris
in 1985 and received little attention. It wasn't until 2600 magazine published
source code to exploit this weakness in popular implementations of the TCP/IP
protocol stack that this weakness grabbed the attention of Internet Service
Providers. One provider, Public Access Networks Corporation of New York City,
was attacked repeatedly last September, causing its mail and web servers to be
unavailable to its users for extended periods of time. In this article we explain
what SYN really is, why it's needed in TCP/IP, why the attack works and how to
prevent it.

Introduction

The Internet works as well as it does because its data communication protocols
(IP, TCP and UDP) evolved over a decade through major revisions and trial-and-
error “adjustments”. As a result, the protocols have developed a legendary
robustness that makes them difficult to defeat; however, these protocols were
designed with the basic assumption that all network administrators can be
trusted. Unfortunately, this is not true in today's Internet environment. Given
the right kind of knowledge, virtually any PC can be configured so that a
malicious individual, acting as a system or network administrator, can bring
down any number of servers on the Internet.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

One of these vulnerabilities is called the “SYN” (synchronous) attack, and it can
affect anyone who places a server on the Internet. The SYN attack is a denial of
service attack, blocking others from connecting to your server.

Network Layers

The Internet protocol stack utilizes three primary layers of the OSI model. The
lowest layer is the physical layer, and it contains the physical wires, network
host adapter(s) and adapter device driver(s). The next layer is the data link
layer, whose job is to read a stream of bits off the network and assemble them
into frames for the next higher layer.

The Internet Protocol (IP) or network layer is the next layer. It examines the
incoming frames to determine if they are IP packets and, if not, it passes the
frame onto another protocol stack (e.g., Novell) or discards the frame as
nonsense. If it is an IP packet, the packet contents are further evaluated by the
IP layer for a number of IP related activities such as Address Resolution
Protocol (ARP) or Internet Control and Message Protocol (ICMP), which the
connectionless ping and traceroute applications employ.

If the packet is not one of the above formats, its content continues to be
evaluated as a Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP) packet. If the packet contains a TCP header, it is posted to the next higher
TCP layer. The verb “posted” is significant in that the packet is moved to
another place for processing, and that processing will occur sometime in the
future. In other words, it is at the IP-TCP boundary where information, driven
by interrupts, “bubbles up” from the environment; it is at the IP-TCP boundary
where information waits for processing based upon requests from programs
that wish to communicate with the network. Therefore, the IP-TCP boundary
contains a fixed amount of memory buffers allocated to network “activity”
without the system really knowing what that activity is. It is at this boundary
that the SYN attack works.

SYN Protocol by Analogy

Before discussing the third Internet layer and how TCP establishes a
connection, perhaps it is better to begin with an analogy that illustrates a
typical network problem and how TCP overcomes the problem in its daily
routine.

Our analogy begins on a college campus with a studious student (SS) who has
the misfortune of being placed in a “party” dorm. On a typical evening, SS is
studying at his desk trying to master some dry material on data link protocols
for his computer networks class. Someone knocks at his door. Upon opening
the door, he gets hit with a water balloon from his rowdy neighbors. Using the

material from his network class, SS comes up with a solution to stop his pesky
neighbors, yet still greet his invited visitors.

He decides on a “secret knock”—his friends announce themselves with a one to
five knock code. SS hears the knock and goes to the door; however, he does not
open it. Instead, he repeats the original knock and adds his own one to five
knock code. Now the visitor knocks the next “sequence” of his code and repeats
SS's knocks.

These knocking gymnastics are referred to as a three-way handshake (see
Figure 1) in data communications lingo, and solve three common network
problems. First, they allow two hosts to establish starting “sequence” numbers
which are used by the receiver to re-order packets or reassemble datagrams.
Second, they enable the host to identify duplicate packets that occur from re-
transmissions which, in turn, are a result of delayed responses. Finally, if either
computer were to initiate a connection with a third computer at the same time,
then two orderly connections could result, without confusion.

Figure 1. The 3-Way Handshake

The Transport Station

Network traffic arrives at a given host and accumulates at the IP-TCP boundary,
but nothing happens until a user-level process performs a request for network
service through the transport station (TCP or UDP).

Most user-level Internet applications use a “virtual circuit” model for
communication with web browsers such as Netscape or Lynx, FTP clients and
Telnet clients. Steps in creating a connection or virtual circuit require the
remote computer to request a “connect” which puts an IP packet in the local
computer's IP-TCP boundary buffers. The local computer program requests a
“listen”, then an “accept”. It is during these listen-connect-accept phases that
TCP employs the three-way handshake to establish a virtual circuit.

Let's say there are two hosts, A and B, which exist on a network. A wishes to
connect to B and issues a connect request. There are six bits defined in the TCP
datagram header, two of which are the “SYN” (synchronize) and “ACK”
(acknowledge) bits. The connect request datagram has the SYN bit set and the
ACK bit cleared. When the process on host B receives the datagram, it accepts
the sequence number, builds a reply datagram with B's separate sequence
number plus host A's sequence number incremented by one, and the datagram
is sent to A with the SYN and ACK bits on. Host A now has confirmation that B
has provisionally accepted the connection, and it sends out the first data using
the incremented sequence from its first datagram and returning B's
incremented sequence number as an acknowledgment. The datagram now has

https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f1.jpg

just the ACK bit set and when it is received by host B, the connection is
established. (See Figure 2.)

Figure 2. Establishing a Connection Using 3-Way Handshake

The SYN Attack

Returning to the above analogy for a moment, we can see that the knock code
is able to defeat SS's rambunctious neighbors, but what if they decide to knock
once an hour or once every five minutes? What is our studious student to do?
The knocks distract him from his homework, but if he ignores the knocks he
misses any friends who come by. In other words, frequent knocks deny service
to SS's friends.

The same is true at the IP-TCP boundary buffers. Once the host receives a SYN
datagram and replies with an ACK datagram, how long does the host wait for
the third part of the handshake? Unfortunately, current implementations wait
forever.

Under normal circumstances, connections are established quickly, and so
developers assumed that only a few buffers would be needed for all possible
connections in the host. Under the 1.2.x Linux kernels, only 10 buffers are
allocated.

To create a SYN attack, a program does not simply use the connect request;
instead it opens a raw network connection directly and sends a burst of TCP
SYN datagrams, ignoring any replies from the target host. The few buffers are
now full and the target host is unable to establish any subsequent connections.
Service has been denied to the target host. (See Figure 3.)

Figure 3. The SYN Attack

What makes this attack so insidious is that the attacker also inserts random IP
source addresses in each datagram, thereby making it almost impossible for
the remote host to trace the datagrams back to the real source.

A Case Study

An Internet Service Provider (ISP) closed a user's account because the user
violated their acceptable use policy. This user now gets an account at a
competing ISP and, armed with the latest issue of 2600, dials up the new ISP
using his PC running Linux. The user compiles the sample program given in
2600, and runs it repeatedly against his old ISP's mail server and web server,
filling up the connection queue on the ISP's servers. No one can receive mail or
reach the ISP's web pages.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/038/2056f3.jpg

After restarting his web server several times, an administrator at the ISP runs
netstat and notices a lot of the entries are flagged SYN_RECV. All of these
entries are from random IP addresses. The administrator tries to ping several
of the addresses, but they all fail to return any pings. The administrator then
calls his network provider, a prominent National Service Provider (NSP), and
requests help in tracking the attacks to the source. Unfortunately, the NSP is
very busy maintaining its network, and doesn't have the resources to assist in
such a search.

The ISP goes out of business.

Solutions

To lessen the severity of this attack, all providers should install the proper
filters to prevent packages from leaving their network with forged source
addresses, known as IP spoofing. This can be done by preventing packets that
have a source address from outside your network from leaving your network.

Because the Linux kernel source code is under the GNU Public License (GPL),
anyone with a copy of Linux is entitled to the source code. Having the source
code, a user can apply a fix to his kernel and recompile it. If you were using a
proprietary operating system, you would be at the mercy of your operating
system vendor.

One of the easiest ways around this problem is to increase the size of the
queue. This has been done in the 2.0.x kernels. If the queue is made large
enough, it becomes more difficult for hosts with slow connections to the
Internet (dial up, dynamic IP connections) to flood enough packets to prevent
normal connections.

For your network servers to take advantage of the larger queue, they must be
recompiled with a larger value as the backlog argument for the listen() function.
Sendmail and inetd (found in NetKit-B) are two important programs that must
be recompiled to “SYN-proof” your system.

A patch from Alan Cox implements random dropping of uncompleted
connections, which prevents the buffers from filling, although the number of
partially completed connections in the listen queue can increase. This same
patch, which has yet to be integrated into the 2.0.x kernels as of patch level 27,
also disallows a single class C from using up more than 30% of the queue. This
last method prevents attacks from providers who have installed the source
filters discussed above and from exploiters who do not use random source
addresses.

The patch for the current kernel (2.0.29) can be obtained from http://
www.dna.lth.se/~erics/linux.html. To apply it, download and unzip the patch
into the /usr/src subdirectory and type

patch < tcp-syncookies-patch-1. When you run make config (or menuconfig or
xconfig), you will see two additions under “Networking Options”. Just compile
them into the kernel.

Other methods of protection have been suggested on various Internet forums,
including creative firewalls that establish the TCP connection and then pass it
on. Several companies are marketing commercial products based on these
ideas. These solutions are not necessary for Linux users. Network solutions
such as those are for users who don't have the option of compiling a fixed
kernel.

Conclusion

The Internet is undergoing a massive scaling, and as a result, it is no longer
possible to identify a given network administrator. While the Internet protocols
were designed for unreliable networks, they were not designed for untrusted
networks.

Although the SYN attack has proven very effective in denying service to
important servers, the problem is well under control in the Linux world. The
combination of a larger queue and the random drop technique makes your
Linux-based system relatively immune to this attack.

Douglas L. Stewart works for Pencom Systems Administration and graduated
from the University of Mississippi in December. Douglas can be reached via e-
mail at douglas@pobox.com.

P. Tobin Maginnis is an Associate Professor of Computer Science at the
University of Mississippi.

Thomas Simpson is a graduate student in Computer Science at the University of
Mississippi.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:douglas@pobox.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Network Management & Monitoring with Linux

David Guerrero

Issue #38, June 1997

Some handy tools for managing today's ubiquitous networks.

In today's world, where all the computing revolves around the concept of
networking, the work for system administrators has become more and more
overwhelming. It is the mission of maintaining the availability of resources such
as routers, hubs, servers and every critical device in the network.

There are many reasons managers would like to monitor network devices:
bandwidth utilization, operational state of links, bottlenecks, problems with the
cabling or routing information distributed between its devices, etc. Monitoring
network activity is also a good starting point for discovering security problems
and misbehaviors.

In many cases, the network of an organization includes expensive links to
remote networks (WAN) or the Internet, whose costs may be based on traffic
volume. It's very important to maintain statistics of traffic going through these
links. This is a very common task in Europe, where X.25 links are still very
common. These links are charged on the basis of packets transmitted and
received.

Other types of links, like Point to Point or Frame Relay, are usually charged on a
flat rate. In these, the telco ensures a bandwidth that is important to monitor.

In the final part of this article we focus on a tool designed to monitor traffic in
router interfaces, with a great graphical representation of this information. It
can be easily modified to monitor other kinds of information.

What's SNMP?

The answer to all these needs is a protocol named Simple Network
Management Protocol (SNMP). Designed in the '80s, SNMP's initial aim was to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

integrate the management of different types of networks with a simple design
that caused very little stress on the network.

SNMP operates at the application level using TCP/IP transport-level protocols so
it can ignore the underlying network hardware. This means the management
software uses IP, and so can control devices on any connected network—not
just those attached to its physical network. This also has disadvantages: if the IP
routing is not working correctly between two devices, it's impossible to reach
the target to monitor or reconfigure it.

There are two main elements in the SNMP architecture: the agent and the
manager. It's a client-server architecture, where the agent is the server and the
manager is the client.

The agent is a program running in each of the monitored or managed nodes of
the network. It provides an interface to all the items of their configuration.
These items are stored in a data structure called a management information
base (MIB), which we explain later. It's the server side, as long as it maintains
the information being managed and waits for commands from the client.

The manager is the software that runs in the monitoring station of the network,
and its role is contacting the different agents running in the network to poll for
values of its internal data. It's the client side of the communication.

There is a special command in the SNMP command set called trap that permits
an agent to send unsolicited data to the manager, to inform it of events, such
as errors, shutdowns, etc.

In essence, SNMP is a very simple protocol as long as all the operations it
performs deal with the fetch-and-store paradigm, and this allows for a small
commands set. A manager can perform only two different operations on an
agent: request or set the value of a variable in the MIB of the agent. These two
operations are known as get-request and set-request. There's a command to
respond to a get-request called get-response, which is used only by the agent.

The extensibility of the protocol is directly related to the capability of the MIB to
store new items. If a manufacturer wants to add some new commands to a
device such as a router, he must add the appropriate variables to its database
(MIB).

Almost all manufacturers implement versions of SNMP agents in their devices
—routers, hubs, operating systems, and so on. Linux is not an exception to this,
and publicly available SNMP agents for Linux can be found on the Internet.

Dealing with Security

SNMP provides very little support for authentication schemes. It supports only
a two-password scheme. The public allows managers to request the values of
variables, and the private allows these values to be set. These passwords in
SNMP are called communities. Every device connected to an SNMP-managed
network must have these two communities configured. It is very common to
have the public community set to “public” and the private community to
“private”, but it's very important to change these values to reflect the security
policy of your organization.

What's the MIB?

SNMP defines a separate standard for the data managed by the protocol. This
standard defines the data maintained by a device in the network and what
operations are allowed on it. The data is structured in a tree form, and there is
a unique path to reach each variable. This structured tree is called the
Management Information Base (MIB) and is documented in several RFCs.

The current version of the TCP/IP MIB is MIB-II and is defined in RFC-1213. It
divides the information a TCP/IP device should maintain into eight categories
(shown in Table 1), and each variable included in this information must fall in
one of them.

Table 1

The MIB definition of a particular item also specifies the data type it can
contain. Usually, items of an MIB can store single integers, but they can also
contain strings or more complex structures, like tables. Items in an MIB are
called objects. Objects are the leaf nodes of the MIB tree, but an object can
have more than one instance—for example, a table object. To refer to the value
contained in an object, you must add the number of the instance. When only
one instance exists for an object, this is the 0 instance.

For example, the object ifNumber from category “interfaces” contains an
integer with the number of interfaces present in this device, but the object
ipRoutingTable from category “ip” contains the routing table of the device.

Remember to use the number of the instance to retrieve the value for an
object. In this case, the number of interfaces present in a router can be viewed
with the instance ifNumber.0.

In the case of a table object, you must use the index of the table as the last
number to indicate a specific instance (row of the table).

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140t1.html

There is another standard by which to define and identify MIB variables, called
Structure of Management Information (SMI). SMI specifies MIB variables must
be declared in an ISO formal language called ASN.1 that makes the form and
contents of these variables unambiguous.

The ISO name space is within a global name space with other trees for other
standards organizations. Within the ISO name space there is a specific tree for
the MIB information. Within that MIB part of the tree are areas for objects from
all protocols and applications so their information can be represented
unambiguously.

Figure 1 shows the TCP/IP MIB name space is located just down the mgmt
name space of the IAB. The hierarchy also specifies a number for each of the
levels.

Figure 1. TCP/IP Organizational Tree

It's important to notice that most of the software needs the leading dot (root) to
locate the object in the MIB. If you don't include the leading dot, it assumes a
relative path from .iso.org.dod.internet.mgmt.mib-2.

This way the object ifNumber from category “interfaces” can be named:

 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifnumber

or its numerical equivalent:

 .1.3.6.1.2.1.2.1

and the instance as:
 .iso.org.dod.internet.mgmt.mibxi-2.interfaces.ifnumber.0

or its numerical equivalent:
 .1.3.6.1.2.1.2.1.0

Additional MIBs can be added to this tree as vendors create them and publish
the suitable RFCs.

What's the Future of SNMP?

A new specification called SNMPv2 is being actively developed. It addresses the
lack of security of the actual protocol with mechanisms that focus on privacy,
authentication and access control. It also allows more complex specification of
variables and has some additional commands. The problem with SNMPv2 is it
still is not a commonly accepted standard, unlike SNMPv1. It is not easy to find

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140f1.html

SNMPv2 versions of the agents and software to take advantage of the new
commands. Let's see what happens in the near future...

SNMP with Linux

One of the most popular SNMP packages is CMU-SNMP. Originally designed by
Carnegie Mellon University, it has been ported to Linux by Juergen
Schoenwaelder and Erik Schoenfelder. It's fully compliant with the SNMPv1
standard and includes some of the new proposed functionalities of SNMPv2.

The distribution contains some manager tools that permit, in a command line
style, send requests to devices running SNMP agents. It also contains an SNMP
agent program, designed to run under Linux, that provides managers running
on the network (or the same system) information about the status of the
interfaces, routing table, uptime, contact information, etc.

One very valuable add-on that comes with CMU-SNMP is a SNMP C-API, which
lets programmers build more complex management tools based on the
networking capabilities of the distribution.

The installation on a Linux system is easy, but a little different from the original
CMU distribution. The distribution comes with precompiled binary versions of
the manager tools, the daemon and the API library.

First of all, you must decide whether to get the binary or the source
distribution. It's easy to locate the package on the Internet (check the resources
sidebar). The binary distribution runs cleanly with the 2.0 kernel series and is
ELF-based. We will explain how to install the binary distribution. It's a good
practice to get binary distributions only from trusted sites to avoid viruses,
Trojan-horse style attacks and other security problems.

Put the file cmu-snmp-linux-3.2-bin.tar.gz in the root directory (/) of your Linux
system and decompress it with the command:

gunzip cmu-snmp-linux-3.2-bin.tar.gz

Then, untar the distribution to its final location with the command:

tar xvf cmu-snmp-linux-3.2-bin.tar

Now you will have all the utilities and libraries properly installed on your
system, except the SNMP agent configuration file /etc/snmpd.conf. You can
create it by running the script:

 /tmp/cmu-snmp-linux-3.2/etc/installconf

with these options:

/tmp/cmu-snmp-linux-3.2/etc/installconf -mini <password>

where password is the public community you want to use. Now you can edit
the newly installed configuration file /etc/snmpd.conf. In it, you can change the
values for the UDP port used by the agent, the systemContact, systemLocation
and systemName variables and the interface speed parameters for your
network cards and PPP ports.

The most important management tools you get are:

• /usr/bin/snmpget A tool designed to ask for a concrete value in the MIB of
an agent in the network (a router, a hub, etc.)

• /usr/bin/snmpgetnext It allows you to get the next object in an MIB tree
without knowing its name.

• /usr/bin/snmpset A tool to set values in remote agents
• /usr/bin/snmpwalk Tool that requests a complete object or series of

objects without having to specify the exact instance. It's useful for
requesting table objects.

• /usr/bin/snmpnetstat

• /usr/bin/snmptrapd Daemon that listens for traps sent by agents
• /usr/bin/snmptest Interactive tool designed to demonstrate the capacities

of the API.

The agent is located in the /usr/sbin/snmpd directory.

CMU-SNMP also installs an MIB file in /usr/lib/mib.txt. It's a good reference to
search for information we can request from a device.

The agent must be run at startup time, and can be set up with this line in one of
your system boot files (/etc/rc.d/rc.local, for example):

/usr/sbin/snmpd -f ; \
 echo 'starting snmpd'

Once you have the SNMP agent running for your Linux box, you can test it with
one of the management tools, entering:

/usr/bin/snmpget -v 1 localhost \
 public interfaces.ifNumber.0

which will return the number of network interfaces configured in the system,
and:

/usr/bin/snmpwalk -v 1 localhost \
 public system

will return all the values in the system subtree of the MIB. (See Figure 2 for the
output of this command.)

The C-API is located in /lib/libsnmp.so.3.1.

You can check the related header files as follows:

• /usr/include/snmp/snmp.h
• /usr/include/snmp/snmp_impl.h
• /usr/include/snmp/asn1.h
• /usr/include/snmp/snmp_api.h

and more information in the man pages snmp_api(3) and variables(5).

There's also a Perl extension module to interface with the CMU C-API that easily
integrates calls to this library in Perl scripts.

MRTG: Multi Router Traffic Grapher

MRTG is an advanced tool written by Tobias Oetiker and Dave Rand to
graphically represent the data SNMP agents brings to SNMP managers. It
generates nice HTML pages with GIF graphics about inbound and outbound
traffic in network interfaces in almost real time. This abstracts the idea of
dealing directly with objects of an MIB with a command line tool like CMU-
SNMP. This is the simplest and most powerful tool to monitor my routers I have
found on the Internet.

MRTG uses an SNMP implementation coded entirely in Perl, so there is no need
to install other packages. The main program is written in C to speed up the
logging process and the generation of GIF images. The graphics are generated
with the help of the GD library from Thomas Boutell, author of the WWW FAQ.

One of the highlights of MRTG is its expandability and powerful configuration.
It's very easy to monitor any SNMP variables instead of traffic, like error
packets, system load, modem availability and others. It's even possible to
import data from an external program to feed the data, so you can use it to
monitor login sessions and other information not available through SNMP.

It comes with some tools to watch your router for interfaces, extract their
characteristics and generate a base configuration file you can easily tweak to
accommodate your needs.

Another interesting feature of MRTG is the amount of information it generates.
It permits four levels of detail for each interface: traffic in the last 24 hours, the

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140f2.html

last week, the last month and a yearly graphic. This allows you to gather
information for statistical purposes. It maintains an accumulated database with
all this information with the help of a consolidation algorithm that prevents the
data in the logs from eating up your disk space.

It also generates a main page that contains the GIF images of the daily details of
every interface of a router, which lets you have a complete idea of what's
happening in your router with a simple look. You can see the main page and a
detail page generated by MRTG in Figures 3 and 4.

Figure 4. Interface Detail Page

Let's see a basic installation procedure. First of all, you need the distribution of
MRTG. At the time of this writing, the latest version was 2.1; check the URL in
the references sidebar for the latest version.

A package you must install before compiling MRTG is the GD graphic library.
The URL is in the references sidebar, too. The current version of GD is 1.2, and
you shouldn't have any problems compiling and installing it. Simply run make

in the directory you unpacked the distribution and a file called libgd.a will be
generated. Copy this file to /usr/local/lib and all the .h files to the directory /usr/
local/include/gd.

At this point you should have GD up and running. Now is the time to build the
MRTG package. Unpack the distribution, and edit the Makefile, indicating where
to find the GD libraries and header files, and the Perl 5.003 binary—usually /
usr/bin/perl or /usr/local/bin/perl. This is done through the variables GD_LIB,
GD_INCLUDE and PERL.

Build the main program by typing make rateup, and when the compilation
finished, enter make substitute to include the correct PATH to the Perl
interpreter within the set of Perl scripts that MRTG uses.

Copy the following files to the final destination of the binaries (for example, /
usr/local/mrtg): BER.pm, SNMP_Session.pm, mrtg and rateup. You can also
copy to this location the two configuration programs, indexmaker and
cfgmaker.

Ensure that all the programs have the execution bit set. Now we're ready to
build a simple configuration file. At this point you should have SNMP read
access to your router. In a Cisco router, the configuration lines to allow this are
the following:

access-list 99 permit 193.147.0.8
access-list 99 permit 193.147.0.9

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140f4.jpg

access-list 99 permit 193.147.0.130
snmp-server community public RO 99

This allows read-only requests from the addresses specified in the access list 99
using “public” as a password (community). If you want to allow every node in
the network Read Only (RO) access to the router, you can have a line like this
one:

snmp-server community public RO

If you have another brand of router, check the manuals to determine how to
allow SNMP access to them.

The cfgmaker script greatly simplifies the task of building the configuration file.
All you have to do is run it with the following arguments:

cfgmaker <community>@<router-host-name or IP>

For example:

cfgmaker public@mec-router.rediris.es > mrtg.cfg

It will discover every interface in your router and write a section in the file with
its specifications of numbers of interfaces, maximum speed, description, etc,
with some HTML tags to include them in the detail page. It's possible to edit this
HTML layout to suit your language, preferences, etc. You can see in Figure 5 the
output for one of the interfaces of my router.

Router Interface Output Tree

Now you can run the mrtg program for the very first time. Simple execute:

 ./mrtg mrtg.cfg

If all goes well, it will contact your router, request some values, and generate
some log files and several GIFs in the current directory. Don't worry about the
complaints about the log and graphs not found, as this will happen only the
first time. Remove the graphs and run the program again. The graph generated
shows the traffic in the interval since you last ran the program. It also generates
HTML pages for each interface.

Now it's time to instruct MRTG to run properly in your system. First, create a
directory under the Document Root of your web server (assuming you run a
web server on the same system) to accommodate the pages and graphs MRTG
will generate each time it runs. Add this directory to the top of your
configuration file with the directive WorkDir: /usr/local/web/mrtg (assuming
that your Document Root is located in /usr/local/web). The next time MRTG

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140f5.html

runs, it will create the logs and graphs in this directory, allowing you to access
them via http://your_host.domain/mrtg.

Figure 3. Interface Main Page

Now, you would like to build a main page for all the interfaces like the one
shown in Figure 3. This can't be accomplished with the indexmaker tool. Run:

indexmaker mrtg.cfg <router-name regexp> >
 /usr/local/web/mrtg/index.html

It will generate an HTML page with the daily graphs of interfaces whose router
name matches the previous regular expression and links to their single detail
pages.

As you can imagine the MRTG program must be run on a regular basis to collect
the data for each interval and generate the graphs periodically, in order to
maintain the illusion of real-time monitoring. This is done through the following
line in the crontab (assuming /usr/local/mrtg-bin as the mrtg program final
destination):

0,5,10,15,20,25,30,35,40,45,50,55 * * * * \
 /usr/local/mrtg-bin/mrtg \
 /usr/local/mrtg-bin/mrtg.cfg > \
 /dev/null 2>&1

In a Red Hat distribution, the correct line to append to the /etc/crontab file
would be:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * root \
 /usr/local/mrtg-bin/mrtg \
 /usr/local/mrtg-bin/mrtg.cfg >\
 /dev/null 2>&$

If everything is working fine, you can spend some time tuning your
configuration and HTML index page. A good enhancement is to include in the
<HEAD> section of the index page a <META> to force the browser to reload
every 300 seconds to maintain the latest information on the screen.

Another enhancement you can include in your configuration file is the
WriteExpire directive, which forces MRTG to create .meta files for each GIF and
HTML page, eliminating unnecessary caching time by proxy servers and
browsers. For this to work, you must also configure your Apache server
(assuming you run the Apache web server) to read these .meta files and send
the correct “Expire” headers with the MetaDir directive in the XXXX file.

You can look for additional directives in the example configuration from the
distribution; it's very well documented. It's possible to alter all the layout of the
images and pages generated by MRTG.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140f3.jpg

I hope you enjoy this program. If you do, send the authors a postcard; you can
find their address on the MRTG home page.

Other programs

There is a similar program called Router-Stats, written by Iain Lea, the author of
the well-known tin news reader. Router-Stats updates its graphics once a day
and shows very interesting stats about hourly usage and other aspects. One
problem with Router-Stats is it uses a lot of external programs to do its work
(CMU-SNMP for SNMP tasks, GNUPLOT to draw the graphics, NetPBM to make
some graphic conversions, and GIFTOOL to convert them to the final GIFs). You
can check the URL for Router-Stats in the references sidebar.

There is another category of software that goes one step beyond in network
management tasks and offers a complete solution for both monitoring and
maintaining the distinct configuration of a whole network. This kind of solution
permits us to draw a complex graphic representation of our network and
browse through the nodes, checking specific items of the configuration and
other interesting features.

At this level, we can talk about two commercial solutions broadly used: HP-
OpenView from Hewlett-Packard and SunNet Manager from Sun. They provide
a complete platform for managing all the resources of the network from great
graphical interfaces. They also come with network discovery tools to find all the
network's elements that have running SNMP agents and databases to store all
the data gathered from the network for statistical purposes. One important
feature of these environments is their ability to be integrated with other
vendors' more specific products, like Cisco's CiscoWorks, that allows a network
manager to maintain a database with all its router configuration and even
monitor graphically the back panels of their routers and all their connections.

There are two drawbacks to these products: they are commercial and they have
no ports to Linux. Of course, there are also public domain solutions for these
tasks. One of the best packages I've found for this is Scotty. Scotty is a TCL-
based package that allows you to implement site-specific network management
software using high-level, string-based APIs. Its companion product, Tkined, is a
network editor that provides extensions to build a complete framework,
integrating some tools designed to discover IP networks, support the network
layout process or troubleshoot IP networks using SNMP in combination with
other standard tools (e.g., traceroute). Scotty also includes a graphical MIB
browser to allow you to explore MIB information.

You can check the references listing for both commercial and public domain
network management software pointers.

Conclusions

SNMP is a simple but powerful protocol that can help us monitor our resources
with little stress to the network. It's possible the extensions being developed
now will increase the complexity and capabilities of this tool but they will also
increase the resources needed to implement them.

In this article, we have explored a couple of tools found on the Net. There are a
lot of tools being developed each day. You can check the Usenet newsgroup
comp.protocols.snmp for announcements of new software and MIBS.

Resources

David Guerrero is a system and network manager for the Spanish Ministry of
Education and Culture. He has been in Linux since the .98plNN days, and now
he's enjoying his new SPARC-Linux box. When not working, he likes to spend his
time with his love Yolanda, trying to play music or going out with his “colegas”.
He can be reached at david@mec.es.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2140s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Ghosting onto the Net

Scott Steadman

Issue #38, June 1997

Communicating from the office to home using a Linux server and the Internet.

Background

Recently I got the urge to tinker with managing my network at home in order to
get some experience with Unix and heterogeneous network management. I
have three Windows boxes (two with Windows 95 and one with Windows 3.1)
hooked up to a Linux server. I use the LinTel box as both a local file server and
as a gateway linking my home network to the Internet.

The software I use to handle the file server tasks is SAMBA. My primary
reference for setting up SAMBA was the excellent article on the subject in the
July, 1996 issue of Linux Journal.

In picking a dial-up program, I kept two requirements in mind:

1. I didn't want to manually log on to my ISP each time I wanted access to
the Internet.

2. I didn't want my LinTel box to call up my ISP on startup and then remain
connected until I shut it down. I wanted to be considerate of my ISP's
other clients by not monopolizing a phone line.

A program written by Eric Schenk, called diald, satisfied both these
requirements. I use diald to connect to my ISP whenever I have traffic destined
for the Internet. It also automatically disconnects from my ISP if there is no
traffic for a specified interval.

I work for various companies with access to the Net, and while at work, I like to
access my home Linux server through the Net from time to time—just in case I
find something neat during a lunch break that I want to tinker with at home. So
I set up my server to connect to the Net at various random intervals between
15 and 60 minutes, loiter around for five minutes and disconnect if there is no

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

traffic. While my server is connected I can download anything I wish. I call this
process ghosting.

These are the steps I went through to get ghosting to work. Depending on
whether you already have Linux installed and what flavor it is, you may be able
to skip some steps.

Linux Installation

The first thing I did was acquire Red Hat 4.0 from Red Hat Software, http://
www.redhat.com/. I had heard good things about Red Hat and liked their “Red
Hat Package Manager” for handling software bug fixes and upgrades—it sure
makes life easier. I installed Red Hat by following the directions given during
the install process.

Next, I downloaded the latest version of the kernel available at that time, 2.0.29,
from sunsite.unc.edu, and configured my new kernel using hardware specific
settings.

Another necessity for ghosting is IP masquerading. I found three good sources
of information on IP masquerading:

1. The most definitive is the IP-Masquerading Resource home page at http://
www.wwonline.com/~achau/ipmasq/.

2. The IP-Masquerading Mini-HOWTO, probably available at your favorite
Linux site on the Net.

3. The last is the IP masquerading article in the July, 1996 Issue of Linux
Journal. I downloaded the latest IP masquerading patch for kernel 2.0.28
and higher from the IP-Masquerading Resource home page, and it worked
fine with my 2.0.29 kernel. Again, all I had to do was follow the
instructions to reconfigure the kernel using the make menuconfig

method. Here are the pertinent settings for IP masquerading to work:
4. Under Code Maturity Level Options, turn on “Prompt for development

and/or incomplete code/drivers”. (The IP masquerading code is still
considered alpha code.)

5. Under Networking Options, turn on “Network firewalls”, “Network
aliasing”, “TCP/IP networking”, “IP forwarding/gatewaying”, “IP
multicasting”, “IP firewalling”, “IP accounting”, “IP masquerading
(EXPERIMENTAL)” and “IP tunneling”.

After configuring the rest of the kernel, I just continued following instructions to
build it. I recommend doing a make zdisk and making sure the system boots
fine from floppy before doing a make zlilo. That way the old kernel doesn't get
accidently blown away. My make procedure is:

make dep
make config
make -j5 zdisk
make -j5 modules
make modules_install

I then reboot from the floppy and keep an eye on the startup information. With
a successful reboot, go back into the Linux source directory and do a make zlilo.
The -j5 switch causes make to spawn up to five compiles simultaneously. This
method of compilation speeds up the build process tremendously.

Setting Up the PPP Daemon

After installing Red Hat I set up the point-to-point protocol daemon (pppd); this
allows my Linux server to communicate with the Internet. The ppp daemon
came with the Red Hat package, and installs automatically when a networking
package is selected.

First, I set up a configuration file named /etc/ppp/options, then created a chat
script to tell the ppp daemon how to communicate with my ISP. The
configuration file I used looks like this:

modem
/dev/cua0
38400
asyncmap 0
defaultroute

The man page for the ppp daemon explains these lines in detail. The default
configuration file that comes with Red Hat should suit your purposes. The only
line to be concerned about is /dev/cua0—this line tells the ppp daemon where
to find your modem.

Before pppd can be used to communicate to the Internet, you have to dial and
connect to your ISP. This usually involves a process called handshaking,
implemented by a program called chat. A chat script sends the chat program
the instructions for logging into your ISP. A chat script is basically a series of
wait and send strings. Red Hat provides a network configuration tool that runs
under X-Windows and can be used to create and test chat scripts. I had a chat
script called /etc/sysconfig/network-scripts/chat-ppp0 (see Listing 1[footnote]). I
symbolically linked this script into my /etc/ppp subdirectory using the following
commands:

cd /etc/ppp
ln -s /etc/sysconfig/network-scripts/chat-ppp0

You will need to modify my chat script by changing the phone number,
username and password responses to match your own. You may also need to
modify the line ppp default depending on the requirements of your ISP—
contact your ISP for that information.

Listing 1. Chat Script

Now, there are some things I want the system to do right after a successful
connect to, or disconnect from, the Internet. Fortunately, pppd has a couple of
features that make this easy. When the ppp link comes up, the daemon checks
for the existence of a script called /etc/ppp/ip-up. If this script exists, ppp
daemon invokes it with the specified connection parameters. My version of this
script appears in Listing 2—notice the comments at the top of the script
indicate the parameters pppd passes to the script.

Listing 2. /etc/ppp/ip-up Script

When the ppp link goes down, the ppp daemon checks for the existence of a
file called /etc/ppp/ip-down. If this file exists, it is invoked when the ppp link is
terminated. The contents of my script are shown in Listing 3. This script mainly
does some cleanup—undoing what I did in the ip-up script.

Listing 3. /etc/ppp/ip-down Script

Setting up the Dialer Daemon

Next, I acquired and set up the dialer daemon, diald. This handy-dandy piece of
software waits until it sees an IP packet destined for the Internet and, if the ppp
connection is not up, automatically starts the ppp daemon, which then
connects to the Internet.

This package can be obtained from http://www.dna.lth.se/~erics/diald.html. A
word of caution—the latest version of diald is 0.16. I am using 0.14. I've tried
0.15, but it had problems reconnecting once I terminated a connection. I have
not had time to test out version 0.16. Version 0.14 works just fine for me. If you
are interested in upgrading to the latest and greatest diald, send me e-mail,
and I'll let you know if it works now. I should have it tested by the time this
article is published. Just follow the included instructions to build and install
diald.

Listing 4: /etc/ppp/diald-up Script

Once I installed diald, I created some scripts to bring it up and down easily. The
script to bring it up is called /etc/ppp/diald-up and appears in Listing 4 with
plenty of comments.

Since this script is somewhat obscure, I will cover it in more detail. The route

command is used to tell the network software how to get from your computer
to other computers and networks. Normally there is a default route the
network software uses when it can't find another suitable route in the routing

https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l4.html

table. To view your routing table, use the netstat -rn command. For more
information see the netstat man page.

The first command in Listing 4 removes the default route in order to make sure
it is free for diald or the ppp daemon to use. This removal is necessary, since
sometimes diald and ppp won't re-assign the default route if one is already
assigned.

The second command starts the dialer daemon. (For more details refer to the
diald man page.) To use this line in your script, you will need to change three
items:

1. the communications device /dev/cua0

2. the local address 10.10.10.1

3. the remote address 192.168.1.2

If you have a fixed IP address, you'll also need to remove the dynamic switch
line from the script.

The third, fourth and fifth commands are used to set up the firewall. These
commands have to be run after the dialer daemon, because it does the
masquerading from the network out to the Internet via the default route.
Whenever a packet needs to leave via the default route, the dialer daemon
senses it and makes a connection to the Internet using the ppp daemon.

I also have a script to shut down the dialer daemon gracefully. I call it /etc/ppp/

diald-down and the source appears in Listing 5.

Listing 5: /etc/ppp/diald-down

The dialer daemon can be communicated with using a named pipe specified on
the diald command line in the diald-up script. I use the recommended name /
etc/diald.fifo. This named pipe allows you to change various parameters of the
program while it is running and to gracefully exit the program without resorting
to the kill command.

The first command in Listing 5 tells the dialer daemon to clean up and get out.
The second command resets the default route back to the Ethernet card.

Testing the Dialer Daemon

To test the diald script, execute tail -f /var/log/messages in one virtual console,
and in another type ping 192.9.9.1 to ping sun.com. After typing the ping

command, you can toggle back over to the first console and watch diald spit out
status messages. These status messages tell you if diald dials your modem and

https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l5.html

activates pppd correctly. If ppp appears to connect properly, you can toggle
back over to the other console and see if the ping is returned. If not, don't panic
—just break out of it using a Ctrl-C and try again. Sometimes packets get
dropped when diald is switching the route from the slip interface to the ppp
interface.

I used the IP address in the above commands on the assumption that you do
not have a name server running on your machine. If you are interested in
getting a name server up and running on your machine—something I
recommend—a couple of good sources of information are the DNS HOWTO
and the Linux Network Administrators Guide by Olaf Kirch.

Create an Appear Script

Next I created an appear script. The appear script causes diald to connect to
the Internet, then sends an indication of where the server can be reached to
the desired location. I created a script called /etc/ppp/appear to do the work.
This script appears in Listing 6.

Listing 6: /etc/ppp/appear Script

Last, I added an entry to the /etc/crontab file. This file is used by the cron

daemon to determine what to run when. (For more information on cron take a
gander at the cron man page.) This is the line I added:

30 07 * * 1-5 root /etc/ppp/appear

This entry tells the cron daemon to start your appear script Monday through
Friday at 7:30 AM. The appear script needs to be started this way only once per
day; it will then restart itself whenever the time is right.

After completing all these steps, I was set up to ghost on and off the Internet,
and if you've been following these steps, you will be ready too.

A Note about Windows 95 Configuration

If you decide, as I did, to hook up some WinTel boxes to your Linux server, here
are some hints to get it up and running.

In the following examples, I am assuming your personal network is on the
192.168.1.* subnet, the Linux server is at 192.168.1.1 and your Win95 machine
is at IP address 192.168.1.2.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2095l6.html

Select the network icon in your Win95 Control panel. Then select the TCP/IP ->
network card entry in the list. Click on properties, so that the properties
window will appear, and do the following:

1. Under the IP Address tab, select “Specify an IP address”, and enter
192.168.1.2 in the IP Address field, also enter 255.255.255.0 in the “Subnet
Mask” field.

2. Under the Gateway tab enter 192.168.1.1 in the “New gateway” field, and
click the Add button. This tells Windows that the Linux server is the
gateway.

3. Under the DNS Configuration tab select “Enable DNS”, and enter the host
name for your machine in the “Host field”. Then enter the domain you use
for your internal network.

4. If you have the DNS name server running on your Linux server, enter
192.168.1.1 in the “DNS Server Search Order” field and click Add. If you are
going to use your ISP's name server, enter your ISP's name server IP
address in this field instead.

5. In the “Domain Suffix Search Order” field, you can re-enter your internal
domain and click the Add button.

6. Last, click on the Okay button. Windows will reboot and you will be set to
go.

Conclusion

This setup has worked quite well for me. Every morning before I go to work I
decide whether I want to be able to access my box from the office through the
Internet. If I do, I just turn it on, and at 7:30 AM cron starts the appear script,
and I'm off to the races.

There are some security issues to be aware of—once your server is on the Net,
anyone can access it. To prevent people from being able to telnet to your
server from anywhere, add the following line to your /etc/hosts.deny file:

ALL: ALL

This entry denies access to your box from everywhere—it is a good default.
Now add the following entry to your /etc/hosts.allow file:

ALL: LOCAL myisp.net mywork.com

This entry allows you to connect only from systems on your local network, your
ISP and your place of work. (For more information about these files, see the
man page for hosts.allow.)

Scott Steadman (ss@stdmn.com) is a contract programmer who lives in
Lawrenceville, Georgia with his lovely wife Kim and their two cats.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:ss@stdmn.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Consistent Keyboard Configuration

John F. Bunch

Issue #38, June 1997

Eliminate inconsistent behavior from your keyboard by following the
instructions in this article.

One of the convenient features of Linux is that the keyboard can be completely
reconfigured to suit personal tastes. This feature can be a blessing or a curse
when keys do not perform the same actions in all applications, but with a little
work you can program any key to perform almost any task. Inconsistent
keyboard behavior can be eliminated, and applications customized as desired.

In this article, you learn how to achieve consistent behavior for the BACKSPACE,
DELETE and ALT keys. The Caps Lock key is switched with the left CTRL key to
make the typing of control characters easier. The keys of the editing keypad are
configured to perform as labeled. Function keys, and some keys of the numeric
keypad, are programmed to perform arbitrary tasks. A shutdown key is also
configured.

The keyboard configuration techniques will be demonstrated by a wide range
of examples, one program at a time. Where practical, these techniques will be
demonstrated for bash, less, Netscape, minicom and Emacs. Furthermore, the
keyboard will be made to work as desired, regardless of whether the
application is running in an xterm window, in a virtual console, or in an X11
window manager. However, it is assumed that the user has an IBM PC-
compatible keyboard.

Definitions

An IBM PC-compatible keyboard is divided into five blocks of keys. The
alphabetic keys and those surrounding them form the main keypad. To the
immediate right of the main keypad are two small sets of keys. The upper six
keys are the editing keys; the lower four keys are the arrow keys, which are also

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

called cursor control keys. At the far right is the numeric keypad. Finally, the
function keys stretch in a single line across the top of the keyboard.

When a function key or an arrow key is pressed, an escape sequence is
normally transmitted by the key. An escape sequence is a string of a few
characters, the first of which is an ESCAPE control code. The rest of the string is
used to distinguish one key from another.

The VT100 family is a set line of text-only display terminals once manufactured
by Digital Equipment Corporation. The VT100 has become the de facto
standard for ASCII terminals. Its successor, the VT200, is compatible with the
VT100 family. However, VT200s also have a row of twenty function keys and six
editing keys that the VT100s did not have. The VT200 keyboard is somewhat
similar to the IBM PC-style keyboard that is now in general use.

Keypress Events

A keypress event occurs when the user presses any key on the keyboard. The
event passes through various software programs, eventually resulting in some
sort of action (see Figure 1). Ideally, the same keypress will result in a similar
action in all programs, thus reducing the user's confusion.

For example, suppose a user is running Emacs inside an xterm under the X
Window System and presses the up arrow key. Referring again to Figure 1, the
up arrow is pressed, resulting in an event keycode of 98 being generated, which
uniquely identifies that key. The X Window System translates this keycode into
the “Up” keysym, which is received by the xterm. The xterm then translates the
“Up” keysym into the three-character escape sequence “\\eOA” (“\\e” represents
the ASCII ESCAPE control code). Emacs receives “\\eOA” as a series of three
input events, which are then translated by the function-key-map into the vector
[up]. The vector [up] passes unchanged through the key-translation-map.
Finally, the global-map maps [up] to the previous-line command, which moves
the cursor up one line in the buffer.

Figure 1. Keypress Event Flowchart

BACKSPACE, DELETE and ALT

One way to approach configuring the BACKSPACE and DELETE keys is to let
them act as they do in DOS and MS Windows. That is, BACKSPACE erases the
character to the left of the cursor, and DELETE erases the character under the
cursor. This is a very convenient arrangement.

It is also a good idea to decide what control codes should be transmitted when
these keys are pressed. Based on the key labels, let the BACKSPACE key

https://secure2.linuxjournal.com/ljarchive/LJ/038/0138f1.html

transmit a BACKSPACE (ASCII code 8, 010 in octal, 0x08 in hexadecimal, CTRL-H),
and let the DELETE key transmit a DELETE (ASCII code 127, 177 in octal, 7F in
hexadecimal). Simple solutions are usually the best.

The ALT key, which acts somewhat like a shift key, can be configured in one of
two ways. Either it can set the eighth bit of the key being pressed with it, or it
can cause an ESCAPE to be transmitted just before the key being pressed with
it. Both methods will be used at different times. Sometimes it is simpler to
configure the ALT key to transmit an ESCAPE. For example, holding down ALT

while pressing A would cause the string “\\eA” to be transmitted. However, at
other times it will be configured to set the eighth bit of the character being
pressed, thus adding 128 to the ASCII code of that character. Meta is a synonym
for ALT.

Linux Kernel

First, the kernel's keyboard translation tables will be redefined. Since these
tables are not used directly by the X Window System, use one of the virtual
consoles, not a window manager. Log in as root or use su. Different
distributions of Linux may load the translation tables in different ways. To
determine which keyboard translation table is in use, type:

find /etc -type f | xargs grep loadkeys

You should see output something like:

/etc/init.d/boot: loadkeys \
 /usr/lib/kbd/keytables/us.map

which would indicate that the U.S. translation table is in use.

Assuming the U.S. translation table is in use, enter the following commands to
make a copy of it:

cd /usr/lib/kbd/keytables
cp us.map custom.map

The format of keyboard table files is given in keytables(5).

Now edit custom.map using any text editor. Find the following lines:

keycode 14 = Delete Delete
 alt keycode 14 = Meta_Delete

These lines specify that when keynumber 14 is pressed (the BACKSPACE key),
send a DELETE to the system, and when ALT-BACKSPACE is pressed, send a
Meta_DELETE. To find out the keynumber of any key, use the showkey

command.

To make the BACKSPACE key conform to the design decisions, change these
lines to read:

keycode 14 = BackSpace BackSpace
 alt keycode 14 = Meta_BackSpace

However, a delete key is also needed, so replace the following line:

keycode 111 = Remove

with these two lines:
keycode 111 = Delete Delete
 alt keycode 111 = Meta_Delete

Keynumber 111 is the DELETE key on the editing keypad, just below the INSERT
key.

Now, to swap Caps_Lock with the left CTRL key, redefine keycodes 29 and 58 as
follows:

keycode 29 = Caps_Lock # Left Control key.
keycode 58 = Control # Caps Lock key.

Configuring the numeric keypad presents a special challenge. In us.map,
several of the keys transmit the same escape sequences as an editing key. This
makes it impossible, for example, for a program to distinguish between the
PAGE UP key on the editing keypad and the 9/Pg Up key on the numeric
keypad. Furthermore, the NUM LOCK, /, *, - and + keys do not even transmit
escape sequences.

To alleviate these problems, the virtual console's numeric keypad will be
configured somewhat like a VT100 numeric keypad. Since xterm already
emulates a VT102, this will save work by making the virtual consoles more
compatible with xterm. Note that this technique could cause incompatibilities
with software programs that expect the keys to behave as defined by us.map. If
this becomes a problem, the keys can always be switched back.

To be able to configure the keys of the numeric keypad independently, they will
have to be changed into function keys. Since the kernel supports up to 246
function keys, F1 through F246, this is not a problem. Redefine the following
keycodes as shown:

keycode 55 = F112 # Numeric keypad *.
keycode 69 = F110 # NumLock.
keycode 71 = F107 # Numeric keypad 7.
keycode 72 = F108 # Numeric keypad 8.
keycode 73 = F109 # Numeric keypad 9.
keycode 74 = F113 # Numeric keypad -.
keycode 75 = F104 # Numeric keypad 4.
keycode 76 = F105 # Numeric keypad 5.
keycode 77 = F106 # Numeric keypad 6.

keycode 78 = F114 # Numeric keypad +.
keycode 79 = F101 # Numeric keypad 1.
keycode 80 = F102 # Numeric keypad 2.
keycode 81 = F103 # Numeric keypad 3.
keycode 82 = F100 # Numeric keypad 0.
keycode 83 = F116 # Numeric keypad ..
keycode 96 = F115 # Numeric keypad Enter.
keycode 98 = F111 # Numeric keypad /.

Furthermore, it is necessary to define the escape sequences that these keys
transmit, so add these lines to the end of the file:

string F100 = "\\033Op"
string F101 = "\\033Oq"
string F102 = "\\033Or"
string F103 = "\\033Os"
string F104 = "\\033Ot"
string F105 = "\\033Ou"
string F106 = "\\033Ov"
string F107 = "\\033Ow"
string F108 = "\\033Ox"
string F109 = "\\033Oy"
string F110 = "\\033OP"
string F111 = "\\033Oo"
string F112 = "\\033Oj"
string F113 = "\\033Om"
string F114 = "\\033Ok"
string F115 = "\\033OM"
string F116 = "\\033On"

"\\033" is the octal representation of ESCAPE. These are the same escape
sequences that will be transmitted by these keys when running xterm, after
following the remaining steps.

Although function keys F6 through F12 are compatible with xterm, F1 through
F5 are not. To fix this, add these lines:

string F1 = "\\033[11~"
string F2 = "\\033[12~"
string F3 = "\\033[13~"
string F4 = "\\033[14~"
string F5 = "\\033[15~"

It is recommended that the following keycodes be defined so the keysyms (the
names following the equals signs) will match the keycaps. However, this will not
change the escape sequences transmitted, since these keysyms are only
synonyms for the original keysyms:

keycode 102 = Home # Was Find.
keycode 104 = PageUp # Was Prior.
keycode 107 = Enc # Was Select.
keycode 109 = PageDown # Was Next.

One very nice feature is to be able to hold down the ALT key while using the
arrow keys to pan within Emacs. Since ALT-Left and ALT-Right were previously
used to switch virtual consoles, those functions will be remapped to CTRL-Left
and CTRL-Right.

Change these two lines as shown:

Ctrl-Left (was Alt)
control keycode 105 = Decr_Console
Ctrl-Right (was Alt)
control keycode 106 = Incr_Console

And add the following lines:

alt keycode 103 = F117 # Left Alt-Up Arrow
altgr keycode 103 = F117 # Right Alt-Up Arrow
alt keycode 105 = F120 # Left Alt-Left Arrow
altgr keycode 105 = F120 # Right Alt-Left Arrow
alt keycode 106 = F119 # Left Alt-Right Arrow
altgr keycode 106 = F119 # Right Alt-Right Arrow
alt keycode 108 = F118 # Left Alt-Down Arrow
altgr keycode 108 = F118 # Right Alt-Down Arrow
string F117 = "\\033\\033[A" # Alt-Up Arrow
string F118 = "\\033\\033[B" # Alt-Down Arrow
string F119 = "\\033\\033[C" # Alt-Right Arrow
string F120 = "\\033\\033[D" # Alt-Left Arrow

Note ALT-arrow transmits an ESCAPE followed by the normal escape sequence
for the arrow key.

Of course, CTRL-ALT-DELETE will reboot Linux, but what if the user is finished
for the day and wants a quick shutdown? To make CTRL-ALT-H-END shut down
Linux, add the following lines:

Numeric keypad End
control alt keycode 79 = KeyboardSignal
control altgr keycode 79 = KeyboardSignal
Editing keypad End
control alt keycode 107 = KeyboardSignal
control altgr keycode 107 = KeyboardSignal

Then save the file, and edit /etc/inittab. Add or edit the following lines as
shown:

Action on special keypress (CTRL-ALT-END).
kb::kbrequest:/sbin/shutdown -h now

Save the file, and everything is ready to be tested. Type:
loadkeys custom.map

and try the new keys. DELETE should act as BACKSPACE did before. Caps Lock
has been switched with the left CTRL key. Exit all programs, then try CTRL-ALT-

END. After shutdown, use the hardware reset button to reboot.

If the keyboard passed these basic tests, us.map can be replaced with
custom.map. Regular users may encounter errors when running loadkeys,
because it requires read access to /dev/console. Furthermore, different users
using different maps could cause confusion. Therefore, it is suggested the new
keymap be permanently installed on the system by root.

Warning: If these installation instructions are not followed correctly, it is
possible to place the keyboard in an unusable state, forcing the user to reboot

from the installation floppies. Please take any necessary precautions before
proceeding.

To install custom.map permanently, edit /etc/init.d/boot, or whichever boot
script contains the loadkeys command, and add the following line to the top of
the file:

custom_keys=/usr/lib/kbd/keytables/custom.map

Then replace the loadkeys command with:

if [-f $custom_keys] # If custom keys exist,
then # then load them.
 loadkeys $custom_keys
else # Else use the regular keys.
 loadkeys /usr/lib/kbd/keytables/us.map
fi

This way, if custom.map somehow gets deleted, the keyboard will still work.
Run this script to make sure it is correct. If it works, the new keymap will be
automatically activated at the next system boot.

X Window System

Now start X as root. Change the directory to /etc/X11 and look at the file
Xmodmap. Most likely, this file is empty, except for some comments. If not,
rename it to Xmodmap.old, exit the window manager and restart X.

Starting with an empty Xmodmap is important, because when X comes up, it
creates its keyboard modifier map and keymap table based on the kernel's
current keyboard translation tables, which were just reconfigured. X then reads
the Xmodmap file, which overrides the kernel. This could destroy some of the
benefits of the work just completed on the kernel.

Since the kernel has already been reconfigured, the work of configuring X will
be reduced by the work already done in creating custom.map. Specifically,
DELETE and BACKSPACE will still transmit DELETE and BACKSPACE, because X
got that information from the kernel.

Now enter the following command to replace Xmodmap with the current
keymap table:

xmodmap -pke > /etc/X11/Xmodmap

Edit Xmodmap. It appears similar to the file custom.map, but do not be misled.
The keycodes are different. To find the keycode number for a given key, run xev

from an xterm, put the mouse cursor inside the xev window, and press the key.

Look for the key's “keycode” in the output. For more information, see xev(1) and
xmodmap(1).

Finally, to switch the Caps Lock and the left CTRL key, add these lines to the end
of the file:

! Recreate the Lock and Control modifier maps.
clear Lock
clear Control
add Lock = Caps_Lock
add Control = Control_L Control_R

To be able to configure keys on the numeric keypad, they must be given an
appropriate keysym following the equals sign. Therefore, change the following
lines as shown:

keycode 63 = KP_Multiply
keycode 77 = KP_F1
keycode 79 = KP_7
keycode 80 = KP_8
keycode 81 = KP_9
keycode 82 = KP_Subtract
keycode 83 = KP_4
keycode 84 = KP_5
keycode 85 = KP_6
keycode 86 = KP_Add
keycode 87 = KP_1
keycode 88 = KP_2
keycode 89 = KP_3
keycode 90 = KP_0
keycode 91 = KP_Decimal
keycode 108 = KP_Enter
keycode 112 = KP_Divide

Keycodes 99 and 105 are assigned to the keysyms Prior and Next, respectively.
Just as was done in custom.map, change them to the following keysyms, which
are functionally equivalent, but match the keycaps:

keycode 99 = Page_Up
keycode 105 = Page_Down

Now save the file, then type:
xmodmap /etc/X11/Xmodmap

to activate the new definitions. If your keyboard will not work at all, use CTRL-

ALT-BACKSPACE to exit X. Then use a virtual console to fix the problem.

Xterm

The xterm program receives keysyms from X and converts them into characters
and into escape sequences. Since xterm emulates a VT102 terminal, it requires
little configuration work.

Edit the /etc/X11/Xresources file, and add the following line:

XTerm*ttyModes: erase ^H

This automatically makes BACKSPACE (CTRL-H) delete characters to the left of
the cursor. It is the same as if the user typed:

$ stty erase ^H

every time an xterm was started. Also add this line:
XTerm*appkeypadDefault: true

This will cause the keys of the numeric keypad to transmit their escape
sequences instead of numbers, operators, etc. It is the same as if the user
pressed CTRL--MiddleButton and selected “Enable Application Keypad” in every
xterm window.

Unfortunately, Emacs normally resets the numeric keypad when it exits, so the
keys no longer transmit escape sequences. To correct this behavior, the “rmkx”
capability must be removed from the terminfo(5) database:

cd /etc/terminfo/x
infocmp xterm > xterm.txt
emacs xterm.txt

Remove the “rmkx” entry, save the file, and exit. Then:

tic xterm.txt
rm xterm.txt

It is also necessary to tell xterm what the ALT-Arrow keys transmit, and what
the HOME and END editing keys transmit. (The default escape sequences that
xterm uses for HOME and END are unconventional.) Type the first seven lines
below. Then cut and paste the remaining lines from the xterm(1) man page,
underneath the heading, “The default bindings in the VT102 window are.”

XTerm*VT100*translations:\\
Alt <KeyPress> Up:string(0x1b) string(0x1b) string("OA")
Alt <KeyPress> Down:string(0x1b) string(0x1b) string("OB") \\n\\
Alt <KeyPress> Right:string(0x1b) string(0x1b) string("OC") \\n\\
Alt <KeyPress> Left:string(0x1b) string(0x1b) string("OD") \\n\\
<KeyPress> Home:string(0x1b) string("[1~") \\n\\
<KeyPress> End:string(0x1b) string("[4~") \\n\\
Shift <KeyPress> \
 Prior:scroll-back(1,halfpage) \\n\\
Shift <KeyPress> \
 Next:scroll-forw(1,halfpage) \\n\\
Shift <KeyPress> \
 Select:select-cursor-start() \\n\\
Shift <KeyPress> select-cursor-end(PRIMARY, \
 CUT_BUFFER0) \\n\\
Shift <KeyPress> Insert:insert-selection(PRIMARY,\
 CUT_BUFFER0) \\n\\
~Meta<KeyPress>:insert-seven-bit() \\n\\
Meta<KeyPress>:insert-eight-bit() \\n\\
!Ctrl <Btn1Down>:popup-menu(mainMenu) \\n\\
!Lock Ctrl <Btn1Down>:popup-menu(mainMenu) \\n\\
!Mod2 Ctrl <Btn1Down>:popup-menu(mainMenu) \\n\\
!Mod2 Lock Ctrl \
 <Btn1Down>:popup-menu(mainMenu) \\n\\
~Meta <Btn1Down>:select-start() \\n\\
~Meta <Btn1Motion>:select-extend() \\n\\
!Ctrl <Btn2Down>:popup-menu(vtMenu) \\n\\
!Lock Ctrl <Btn2Down>:popup-menu(vtMenu) \\n\\

!Mod2 Ctrl <Btn2Down>:popup-menu(vtMenu) \\n\\
!Mod2 Lock Ctrl \
 <Btn2Down>:popup-menu(vtMenu) \\n\\
~Ctrl ~Meta <Btn2Down>:ignore() \\n\\
~Ctrl ~Meta <Btn2Up>:insert-selection(PRIMARY, CUT_BUFFER0) \\n\\
!Ctrl <Btn3Down>:popup-menu(fontMenu) \\n\\
!Lock Ctrl <Btn3Down>:popup-menu(fontMenu) \\n\\
!Mod2 Ctrl <Btn3Down>:popup-menu(fontMenu) \\n\\
!Mod2 Lock Ctrl \
 <Btn3Down>:popup-menu(fontMenu) \\n\\
~Ctrl ~Meta <Btn3Down>:start-extend() \\n\\
~Meta <Btn3Motion>:select-extend() \\n\\
<BtnUp>>>>>>>>:select-end(PRIMARY, CUT_BUFFER0) \\n\\
<BtnDown>:bell(0)

Make sure each line ends exactly as shown, and there is not even a blank space
after the last backslash on each line. Then change “Prior” to “Page_Up,” change
“Next” to “Page_Down,” and change “Select” to “End” to match the keycaps.

ALT-Arrow transmits an ESCAPE (0x1b in hexadecimal) followed by the escape
sequence for the arrow key, but ALT-<Keypress> sets the eighth bit of that key
(examine the line that begins with “Meta<KeyPress>”). Also, the escape
sequences for the ALT-arrow keys are not the same as were used in
custom.map. For a full explanation of this file's format, see the RESOURCES

heading under X(1). Save the file. Type:

xrdb /etc/X11/Xresources

to activate the definitions. The BACKSPACE key should now work properly the
next time an xterm is started.

Bash

Create a new file, /etc/inputrc for system-wide use or ~/.inputrc for personal
use. This will be a readline startup file (see bash(1)).

First, make the DELETE key delete characters under the cursor, and make
HOME and END work by adding:

DEL: delete-char
Home.
"\\e[1~": beginning-of-line
End.
"\\e[4~": end-of-line"

DEL is a special symbol bash understands to be DELETE. For the HOME and
END keys, their escape sequences are given in quotation marks, followed by a
colon, and then the command.

To determine the escape sequence transmitted by a key, look it up in
custom.map. Alternately, bring up Emacs, then type CTRL-Q followed by the
key. That will usually insert the escape sequence into the buffer. The ESCAPE
character will appear as ^[, i.e., control-left bracket.

The readline commands shown thus far are taken from the bash man page. If
you would like to program a key to enter a regular command when pressed,
put the command in quotation marks. For example, to make the 1 key on the
numeric keypad list the current directory, add these lines:

KP_1
"\\eOq": "ls\\C-m"

The \\C-m is a CTRL-M, or a carriage return, which, as we know, is necessary to
execute the command.

Other keys may be programmed as desired. Save the file.

If a system-wide /etc/inputrc file was created, add the following line to /etc/
profile:

export INPUTRC=/etc/inputrc

Then type:

. /etc/profile

This will override the default initialization file, ~/.inputrc.

Regardless of where the file was created, it may now be activated by typing
CTRL-XCTRL-R, which is normally bound to the readline command “re-read-init-
file.”

Less

Create a new file, /etc/lesskey, for system-wide use. This will be a lesskey(1)
input file. Type these lines exactly as shown and then save the file:

#line-edit
\\177 delete
^H backspace
\\e[1~ home
\\e[4~ end

The control line, #line-edit, introduces bindings for line-editing commands. \
\177 is the octal representation of DELETE, and ^H represents CTRL-H, which is
a BACKSPACE. The escape sequences are those transmitted by the HOME and
END keys.

Compile the file as follows:

lesskey -o /etc/less /etc/lesskey

Add the following line to /etc/profile:

export LESS="-k/etc/less$"

Then type:
. /etc/profile

The next time less is executed, it will read the key definitions from /etc/less.
When entering a command line at the bottom of the screen (for example, the
pattern for a search command), these key definitions will be active.

If a user wants to add personal key definitions to less, they may be placed in a
file, say ~/lesskey, then compiled as follows:

lesskey -o ~/.less ~/lesskey

These personal key definitions will be activated in addition to those defined
system-wide.

Netscape and Minicom

Since Netscape is from the DOS/Windows world, it requires no special
configuration. The designers made BACKSPACE, DELETE, HOME, END, PAGE UP

and PAGE DOWN work just as expected. It simply shows that somebody did a
good job, and it lends credibility to this design.

If minicom is used, then as root, enter the command:

minicom -s

This will activate the configuration menu for minicom. Select “Screen and
keyboard” from the menu. Type “A,” then press the space bar. Use “B” to
determine what BACKSPACE should transmit. Since most remote systems will
use DELETE to delete to the left, “DEL” is probably the best choice here. If this
creates a problem, change it to BS. Press ESC when done.

Back at the configuration menu, select “Save setup as dfl,” then “Exit from
Minicom.”

Emacs

Emacs can be executed in at least three different environments: in a virtual
console, in an xterm, or in an X11 window manager. To run Emacs within an
xterm, the -nw option must be used. Regardless of the environment, the keys
will be made to perform identical functions.

Emacs contains a series of many keymaps that translate input events into other
input events and eventually into commands. Three of these keymaps are

diagrammed in Figure 1. The ellipses indicate the omission of keymaps beyond
the scope of this article.

As root, change directory to /usr/lib/emacs/XX.XX/lisp/term, where XX.XX is the
version of Emacs installed. This directory contains initialization files for several
types of terminals. Read the README file for more information.

Make a backup of xterm.el, then edit this file to look like Listing 1 This file maps
the escape sequences sent by the keys onto Emacs vectors of length 1. A vector
is a general-purpose Emacs array, and vector values are enclosed in brackets,
e.g.,.

When Emacs is executed in an xterm or a virtual console, it reads this file. The
function-key-map is then configured such that when any of these keys are
pressed, Emacs automatically translates the escape sequences into vectors.
This makes it easier to configure Emacs, not only because all of the keys can be
referred to by their names, but also because the programmer never needs to
remember the escape sequences after this file has been created. Furthermore,
these vectors have the same names as the X Window keysyms, thereby
providing consistency among all three execution environments.

The PAGE UP/DOWN keys are now referred to as prior and next. These
definitions provide support for some of the Emacs commands, such as
calendar, which expect these keys to be available. Also, even though /etc/X11/
Xmodmap defines these keys to transmit the Page_Up and Page_Down
keysyms, Emacs sees them as prior and next when running under X.

Two sets of definitions are listed for the arrow keys, Reset or Normal and Set or
Application. This is because the VT100 series of terminals has two modes of
operation in which keys transmit different escape sequences. Notice that in /
usr/lib/kbd/keytables/custom.map, ALT-UP ARROW 17) transmits \\e\\e[A, but
in /etc/X11/Xresources, ALT-UP ARROW transmits \\e\\eOA. In both cases, these
are an ESCAPE followed by the escape sequence transmitted by the UP ARROW

key. One method of dealing with this problem is simply to define both sets of
escape sequences, as is shown here.

The configuration file, xterm.el, needs be compiled for increased performance,
as well as to overwrite the previously compiled version. After saving the file,
enter the following command:

emacs -batch -f batch-byte-compile xterm.el

Since this file is also designed for the virtual consoles, make links as follows:

https://secure2.linuxjournal.com/ljarchive/LJ/038/0138l1.html

ln -s xterm.el con80x25.el
ln -s xterm.elc con80x25.elc
trl

The .elc files, which are compiled, are the ones used by Emacs.

For running Emacs directly under X, some changes need to be made to x-win.el.
Please make a backup copy, then find and change the following lines as shown:

(define-key function-key-map [backspace] [?\\b])
(define-key function-key-map [M-backspace] [?\\M-\\b])
(put 'backspace 'ascii-character 8)

Save the file. Compile it with:

emacs -batch -f batch-byte-compile x-win.el

Emacs does not need to know about escape sequences when running directly
under an X11 window manager, because it receives the keysyms directly and
converts them into vectors automatically. However, since the design states that
the BACKSPACE key transmits a BACKSPACE, not a DELETE, three lines had to
be changed to make x-win.el comply. Note that M-backspace is short for Meta-
backspace, which is a synonym for ALT-backspace.

Now it is finally time for the last step, assigning functions to the Emacs keys.
Change the directory to /usr/lib/emacs/site-lisp, which is where local Emacs Lisp
programs are stored.

Create a file named “ibmkey.el” to define the key bindings for an IBM PC-
compatible keyboard. Enter as much of Listing 2, ibmkey.el, as desired.

The default Emacs key-translation-map is defined in /usr/lib/emacs/XX.XX/lisp/
loaddefs.el. This file is included in the emacs-el (GNU Emacs LISP files) package
of the Debian distribution. It normally maps the F1 key and the HELP key (if
present) to BACKSPACE, because BACKSPACE (CTRL-H) is normally mapped to
the Emacs help-command in the global-map. Refer to Figure 1.

However, to accommodate the design presented here, the key-translation-map
will be redefined. Since Emacs is based on the assumption that DELETE is to be
used to delete characters to the left of the cursor, and since the design
presented here assumes that the BACKSPACE key will perform that function,
the key-translation-map will be used to switch the BACKSPACE and the DELETE

keys. After this is done, pressing the BACKSPACE key will cause a DELETE to
come out of the key-translation-map, and pressing DELETE will cause a
BACKSPACE to come out.

https://secure2.linuxjournal.com/ljarchive/LJ/038/0138l2.html

To reduce confusion, the variable “BACKSPACE” is defined to hold a DELETE,
and the variable “DELETE” is defined to hold a BACKSPACE. This way, when
BACKSPACE is pressed, the value of the variable “BACKSPACE” will come out of
the key-translation-map, and when DELETE is pressed, the value of the variable
“DELETE” will come out, thus eliminating the confusion caused by the switch.

Many function keys are defined as examples, using the global-map. Since
BACKSPACE is no longer available for help, F1 is now mapped directly to that
function, without the use of the key-translation-map. F4 is mapped to Undo.
The BACKSPACE key and the editing keys are defined to perform their labeled
functions, except for prior and next, which are already defined by Emacs (see
loaddefs.el). While holding down ALT, the arrow keys will pan the text in all four
directions. Finally, the keys of the numeric keypad are defined to perform
various functions.

There are several sources of information for programming Emacs. Press F1
twice to access the extensive online help facility. Also, the GNU Emacs Lisp
Reference Manual (800+ pages) is available at ftp://prep.ai.mit.edu/pub/gnu/
elisp-manual-19-2.4.tar.gz for the truly serious Emacs Lisp programmer. This
manual can also be ordered from the Free Software Foundation. The order
forms are located in /usr/lib/emacs/XX.XX/etc/ORDERS*.

Now save, and then compile ibmkey.el:

emacs -batch -f batch-byte-compile ibmkey.el

Finally, edit /usr/lib/emacs/site-lisp/site-start.el, and add this line:

(load "ibmkey")

This file will automatically load ibmkey.el (or ibmkey.elc, if ibmkey.el was
compiled) when Emacs is started by anyone on the system. If personal key
mappings are desired, place them in ~/.emacs.

Summary

The techniques for configuring and programming the keyboard for the Linux
kernel, the X Window System, xterm, bash, less, Netscape, minicom and Emacs
have been presented. Table 1. Configuration Files and Commands summarizes
the configuration files and commands.

After following these instructions, the keyboard should be configured to act
more like the keyboard the typical user is accustomed to. The editing keys will
perform as labeled. The Caps Lock and left CTRL keys will be switched. Various
other keys will perform useful functions. Furthermore, the basic techniques

https://secure2.linuxjournal.com/ljarchive/LJ/038/0138t1.html

discussed here can be applied to other computer programs which permit
configuration of the keyboard.

John Bunch, bunch@ro.com, is a member of University Baptist Church in
Huntsville, Alabama, where he sings in the choir. To pay his bills and those of
his church, he works as a Software Consultant for Intergraph Corporation. He
holds a B.S. in computer science from the University of Tennessee, Knoxville,
and a M.S. in computer science from East Tennessee State University, Johnson
City.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Wabi: Caldera's Solution for Windows Applications

Dwight L. Johnson

Issue #38, June 1997

Wabi is a Sun Microsystems application that runs Windows 3.1, 3.11 and
Windows for Workgroups on Unix.

• Caldera Wabi 2.2 for Linux
• Price: US$199
• Platforms: SPARC Platform Edition, Intel Platform Edition
• Ordering Information: http://www.caldera.com/, 800-850-7779 in the U.S.

or 801-269-7012 internationally.
• Reviewer: Dwight William Johnson

I find it a bother to reboot my computer to run the Microsoft Windows
applications I need, so I was very excited when Wabi showed up on my
doorstep.

Wabi is a Sun Microsystems application that runs Windows 3.1, 3.11 and
Windows for Workgroups on Unix. You must have one of these versions of
Windows to install into the framework which Wabi sets up on your Linux
system. Then you must install the Windows applications you wish to run into
this environment. While Wabi itself is installed into /usr/opt, the Windows
installation must be repeated in the home directory of each user who wishes to
use Wabi. All of the directory structures created by these installations reside
inside the Linux directory structure and are accessible from Linux.

The Linux version of Wabi 2.2 has been licensed and published by Caldera and
retails for $199. Information about how to obtain Wabi is on the Caldera Web
site: http://www.caldera.com/; you can also call them at 800-850-7779 and
801-269-7012 (international).

In addition to its own Caldera Network Desktop, Caldera claims Wabi also runs
on the Red Hat, Debian and Slackware Linux distributions which have a 1.2.13

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

or later kernel and the X Window System (X11R6). A local or networked CD-ROM
drive is required for installation. A minimum of 10MB free disk space plus space
for Microsoft Windows and its applications is required on your hard drive.

Sun Microsystems has certified an impressive array of 16-bit Windows
applications to run under Wabi 2.2 (see Sidebar).

Many other 16-bit Windows applications can also work under Wabi, they just
have not been tested and certified by Sun Microsystems and Caldera. For
example, I installed QuickBooks 3.0, and so far, it appears to work perfectly.

Wabi enables most of the capabilities of Windows:

• Cut, copy and paste between Windows applications
• Access DOS-formatted diskettes
• Run in enhanced mode
• Object linking and embedding (OLE) between Windows applications
• Dynamic data exchange (DDE) between Windows applications
• Network installation and use of applications
• Windows Sockets networking

And, because it is running in a Linux environment, you can also do the
following:

• Cut, copy and paste between MS Windows applications and X Window
System applications

• Access network file systems transparently
• Use on X terminals
• Run on one system, display on another system
• Run additional applications simultaneously on your desktop
• Share serial and parallel ports
• Support multiple simultaneous users on one system
• Access NetWare files and directories

Functions not supported include those requiring Microsoft Windows
networking, special device drivers and DOS commands. In particular, Wabi does
not support:

• MIDI or AVI
• Full NetWare IPX/SPX connectivity
• Shared Wabi Windows directories

https://secure2.linuxjournal.com/ljarchive/LJ/038/2076s1.html

Inside the attractive Caldera Wabi box, I found the Wabi for Linux CD-ROM and
180-page indexed user's guide. As a Linux user hardened to the perusal of man
pages, READMEs and HOWTOs, I found the high quality of the illustrated Wabi
for Linux User's Guide a refreshing change. Free software is a great concept,
but I can easily justify spending a little money for a product with documentation
that so clearly communicates what needs to be done.

Installing Wabi on my Linux box with Red Hat 4.0 and 2.0.27 kernel went
without a hitch. When I first tried to bring it up, however, my system
immediately froze. This sent me scurrying to find support, and I was very
pleased with what I found. Caldera provides technical support by e-mail and
also hosts two mailing lists, “caldera-users” and “wabi-caldera”. All three of
these support sources got back to me quickly with solutions. In this case, I had
to uninstall Metro-X 3.1.2, which does not work with Wabi, and replace it with
XFree86-3.2. I also found I needed to temporarily disable the font server by
calling Wabi with wabi -fs.

My next challenge was to install Windows: Wabi did not show me an A drive. A
quick query to “wabi-caldera” disclosed I had to expand the permissions on my
floppy drive with:

#chmod 666 /dev/fd0

Windows easily installed from floppy diskettes after this. Wabi also permits
installation via network.

In my case, configuring Wabi was extremely easy. The defaults were adequate
to access DOS files in the Wabi-created C drive. And the PostScript driver
provided by Windows enabled me to immediately print to my Hewlett-Packard
5MP printer.

For more advanced configuration, Wabi provides the Wabi Configuration
Manager, which is extremely easy to use and accessible from an icon inside the
Control Panel. Here, the user can attach Windows diskettes, drives, COM ports
and printers to their Linux equivalents both on a stand-alone Linux box or
across a network. The user can also attach a DOS emulator to the Program
Manager RUN command, the MS-DOS prompt and DOS applications launched
from icons under Windows.

As the DOSEMU 0.63.1.66 packaged with Red Hat 4.0 does not allow
parameters and Wabi requires them, I was not able to test this capability
beyond a simple MS-DOS prompt. Using DOSEMU, I am able to access DOS
through my virtual consoles and xterms quite to my satisfaction, so not being
able to launch DOS applications from Windows icons is, for me, no great loss.

With that behind me, I noticed my keyboard did not work in the necessary way.
For example, ALT-ESC and DEL did not work. By this time I had fortunately
found an additional area of support—the Wabi area of the Caldera Web site at
http://www.caldera.com/. I found documentation of the keyboard problem with
XFree86-3.2 here, and I quickly implemented the fix—placing XkbDisable in my
XF86Config and enabling .Xmodmap in my user directory.

One real nuisance is Wabi's creating sticky windows, which appear on every
virtual X screen. As I was writing this review, some of the subscribers on the
caldera-wabi list were working on a solution by launching Wabi under Xnest
using the following script:

Xnest :1 -geometry 790x572+0+0 &
exec wabi -display :1 +fs

This works great to control the display of Wabi inside one window. I was
unfortunately not able to use it, because Xnest does not inherit the keyboard
controls from the original server but instead implements its own internal
default, which is not the IBM keyboard needed for Microsoft Windows. So for
now, when Wabi is running, it hogs all of the X screens.

Installing the four Windows applications I wanted to use—Aldus PageMaker 5.0,
Aldus FreeHand 3.10, Excel 4.0 and QuickBooks 3.0—was quite routine, and
they all appear to work quite well.

Wabi is fast. I don't notice any difference in speed between Windows running
under Wabi and Windows running under DOS. Cut and paste between Windows
and X Windows applications works as advertised. Hey, I really like this!
Microsoft Windows has never been so much fun.

In concept, Wabi aims toward a seamless integration of Microsoft Windows
with Linux. In practice, there are loose ends in the implementation. For
example:

• The File Manager sets up a diskette for formatting, then gives an error.
Formatting of diskettes must be done in Linux.

• The floppy drives must be world-writable in order for Wabi to function,
thus compromising system security over a network.

• Wabi's sticky windows reduce the functionality of X while Wabi is running.
• Neither Wabi nor Microsoft Windows provides support for the popular

600-dpi printers. I had to settle for a 300-dpi PostScript driver. These are
only minor nuisances, and workarounds are easy to come by. There are
major factors, however, which limit Wabi's marketability:

• Not enough applications are supported.

• Support for only 8-bit displays limits Wabi's usefulness for layout and
desktop publishing even though the applications do run.

• Microsoft is currently deploying 32-bit Windows 97, putting Wabi two
generations behind.

• I feel the price point for Wabi is too high for the Linux market. A $49.95
Wabi would make a lot of money for Caldera. Wabi, at $199, may sit on
the shelf until Linux is a mainstream operating system in corporate
America.

If you want or need the versatility and convenience of running Microsoft
Windows from your X desktop over your network, you don't mind paying for
the privilege, and your expectation is not too great, I would suggest buying
Wabi for Linux now. You won't be disappointed. It is a professionally conceived
and executed product with many nice touches that will give you solid
performance. If you like the idea of Wabi but want to run 32-bit applications,
drive a 24-bit display, or use mostly applications not on the certified list, wait
for Wabi 3.0. The Unix version is scheduled for release in July. Neither Sun nor
Caldera has yet announced a Linux version. However, I will be very surprised if
we don't see one. Let us hope Sun and Caldera will see the light and begin to
price Wabi for the mass market Linux is rapidly becoming.

Dwight William Johnson has been working on and around computers since
1967. Linux has been his preferred platform since April 1996. He lives in a huge
ranch home with his family and ten cats in Sequim on Washington State's
Olympic Peninsula, where he has been known occasionally to plunk on one of
the grand pianos in his living room or saw on one of the violins or even (God
help us!) raise his voice in song. He can be reached via e-mail at
djohnson@olympus.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

OSS/Linux Sound Driver

Jeff Tranter

Issue #38, June 1997

OSS/Linux is the version for Linux systems. It's not surprising that Linux is
supported, as the code was based on, and is compatible with, the sound driver
included in the Linux kernel.

• Manufacturer: 4Front Technologies
• Price: $20 US
• Reviewer: Jeff Tranter

Open Sound System (OSS) is a kernel-level sound card driver offered for a
number of Unix-compatible operating systems by 4Front Technologies. OSS/
Linux is the version for Linux systems. It's not surprising that Linux is
supported, as the code was based on, and is compatible with, the sound driver
included in the Linux kernel. The code is written by the same author, Hannu
Savolainen, who continues to maintain the free version (OSS/Free).

Installation

I took advantage of 4Front Technologies' free trial offer to download and run
the product for five days. If you decide to purchase it you receive a software
license key that allows the software to run permanently.

I also downloaded the latest release of OSS/Linux (3.8-beta1-961205). I installed
the software on a 166 MHz Pentium system with 32 megabytes of RAM running
Red Hat Linux 4.0 and the 2.0.28 kernel. The sound card was a Creative Labs
SoundBlaster 16 (Plug-and-Play version).

The package comes as a compressed tar file containing installation instructions
and an install program. To install the software you have to run the install

program as root. This invokes a curses-based user interface that helps you
install and configure the driver for the sound card. I found it straightforward to
use; my sound card and settings were all automatically detected. The install

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

program noticed that I had the standard Linux kernel sound driver module
installed and informed me that I needed to disable it. Deleting the kernel-
loadable module for sound did the trick.

Once installed, the sound driver is loaded using the supplied soundon script.
The driver is implemented as several loadable kernel modules. A soundoff

script unloads the driver, if desired. Once loaded you can then run any of the
existing Linux sound applications.

Testing

I tried a number of sound applications to play and record sound samples, play
MIDI and MOD files and operate the mixer. In general, everything operated
identically to the standard sound driver included with the Linux kernel. It
provides control of the DSP device, FM synthesizer, mixer and MIDI bus
interface.

I did find one bug. Apparently the MIDI driver didn't clean up resources it used.
If it was unloaded, loading again would report that the I/O port was in use. I
reported this to Tech Support by e-mail and received a response back within a
few hours.

SoftOSS

I downloaded the beta release of OSS/Linux in order to try a new feature,
SoftOSS. To understand it, you need some background on how computers
synthesize sound.

The first generation of computer sound cards used a technique called FM
synthesis to generate computer music. This method is low in cost and requires
little CPU power, but the music generated sounds like it was created by a
computer and not a musical instrument.

Sampling techniques use a digital-to-analog converter to generate sound. This
method can be very effective, as the sound of actual musical instruments can
be digitized and used as samples. The disadvantage is that the digital-to-analog
converters are expensive, so sound cards typically provide only one or two.
Typical low end sound cards today provide both sampling and FM synthesis
capability.

Wavetable synthesis cards combine the best of both techniques. They offer a
number of channels (32 being typical). Each channel has its own digital-to-
analog converter and dedicated memory on the sound card for storing sound
samples. Hardware on the sound card does much of the work of mixing and
playing the samples. The only disadvantage of wavetable cards is that the

additional hardware makes them considerably more expensive. One such card,
the Gravis UltraSound, is supported by the standard Linux kernel sound driver.

SoftOSS provides software emulation of wavetable synthesis using only a low
cost (non-wavetable) sound card. It does so by using the spare memory and
processing power of the host computer. By implementing at the kernel level the
same application programming interface as the Gravis Ultrasound card, it
allows existing applications written for this card to work with low end sound
cards. The only catch is that you need adequate memory and CPU power, but
most systems today can meet this requirement (a 40MHz 486 with 16MB of
RAM was the minimum needed for the pre-release software I reviewed).

I configured the SoftOSS driver using the setting for Pentium 100+ machines
and tried using some Linux applications that previously required a Gravis
Ultrasound wavetable sound card.

The gmod program is a player for music files in MOD format. It operated quite
well. This was not particularly impressive, because there are a number of MOD
players for non-wavetable cards (e.g., tracker) that work just as well with the
standard kernel sound driver.

Playing MIDI files was more interesting. MIDI is a very popular music file format
among musicians, but MIDI file players I've come across before used the FM
synthesizer on my sound card. Using SoftOSS, the playmidi program, and
sound sample “patch” files downloaded from the Internet, there was a dramatic
improvement in sound quality as compared to using FM synthesis. It actually
sounded like real musical instruments.

Note that at the time of writing, SoftOSS was still in a pre-release beta state,
and may be an extra cost option when purchasing OSS/Linux. For a beta
release it looked quite stable, the only problem being some minor glitches in
the sound produced.

Evaluation

So for $20 you get a single machine license for a sound driver that is
compatible with the one in the Linux kernel, a play command for playing sound
files and the soundon and soundoff scripts for loading and unloading the
driver. Included are two years of technical support and five years of software
upgrades. Documentation is essentially some README files covering
installation, but more information, including the sound application
programming interface, is available on the vendor's web site.

What advantages does OSS/Linux have over the free sound driver in the kernel?
Technical support is one advantage which may be important to you if you are

using the Linux sound driver in a commercial setting. The package does appear
to be easier to install and configure, automatically detecting the card settings in
most cases. It also offers support for a few more sound cards (e.g., the
SoundBlaster AWE32) and has better Plug-and-Play support than the free
driver. It seems to be fully compatible with any applications written for OSS/
Free.

On the negative side, there is a cost involved, albeit a small one compared to
most commercial software. Of more concern is the fact that you don't get the
source code. This means that you can't fix bugs or modify or enhance the code
yourself. It also makes the software more sensitive to different kernel versions.
You may have to periodically download a new sound driver from the vendor's
web site when you upgrade your kernel, although a “wrapper” program called
sndshield that you can compile is provided to help get around these problems
most of the time.

Improvements

When using the free kernel driver, I like the fact that it can be automatically
loaded and unloaded on demand using kerneld. The OSS/Linux driver, while it
uses modules, unfortunately doesn't seem to support this. Having to log in as
root and run a command to load the driver is cumbersome, although most
users would probably know enough to put it in a system startup script like
rc.local.

The package doesn't come with any value-added sound applications (except a
simple “play” program). The sound driver on its own isn't very useful. If it was to
come bundled with some of the existing Linux sound applications, less
experienced users could make better use of the driver right away. The way to
package the product, in my opinion, would be as a CD-ROM that came with a
number of sound applications, sound files, and programming documents,
precompiled for Linux systems. This would turn it into a more useful product,
especially for beginners.

Conclusions

If your sound card works fine with the free driver in the kernel and you aren't
interested in SoftOSS, then you probably won't see this product as adding
much value.

If you've fought unsuccessfully to get your sound card to work under Linux,
particularly if it's a Plug-and-Play model, then you should give this product a try.
You can get a free trial copy and it's well worth the cost. If you have a non-
wavetable sound card and are intrigued by SoftOSS, then you may also be
interested in this product.

Finally, the OSS product is also offered for a number of other Unix-compatible
systems. For years Unix systems have had no clear standard for sound
programming. 4Front Technologies is hoping that the OSS API will become a de
facto standard for Unix systems. If successful, this will be an ironic example of
the tail wagging the dog—Unix systems striving to be compatible with Linux. It
also means that sound applications written for Linux will have the opportunity
to run on a wider variety of Unix platforms, expanding their scope.

Resources

Jeff Tranter has been using and writing about Linux for about four and a half
years. He's the author of the Linux Sound and CD-ROM HOWTO documents,
and the book “Linux Multimedia Guide” published by O'Reilly and Associates.
When not playing with computers, he enjoys ham radio, playing guitar and
cross-country skiing. He can be reached via e-mail at jeff_tranter@pobox.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2165s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in a Nutshell

Sid Wentworth

Issue #38, June 1997

This book is designed as a reference for Linux rather than as a teaching tool.

• Author: Jessica Perry Hekman
• Publisher: O'Reilly & Associates
• Price: $19.95
• ISBN: 1-56592-167-4
• Reviewer: Sid Wentworth

Since Unix in a Nutshell was published by O'Reilly years ago, it was only a
matter of time before it was followed by Linux in a Nutshell. The appearance of
this Linux version in bookstores affirms the growing popularity of Linux.

This book is designed as a reference for Linux rather than as a teaching tool. It
contains a minimum of tutorial information. Covered topics include a subset of
the Linux user commands, shells (including bash, csh and tcsh), Emacs, vi, ex,
sed and gawk. There is a limited amount of information on programming and
the programming commands. Finally, there are chapters covering the basics of
systems administration and a listing of systems administration commands.

The section on user commands is about 115 pages. While some commands I
know were missing from the book, there were many more commands,
command options or usage information I learned from it. For example, there
are six pages covering every facet of the less command.

Shell coverage is divided into three chapters: A short overview of shells in
general is followed by a 30-page chapter on the bash shell and a 40-page
chapter on the csh and tcsh shells. My only disappointment was the lack of
information on the POSIX-compliant Korn shell available for Linux; ksh could
easily have been incorporated into the bash chapter.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The chapters on the Linux editors are designed in the same manner as those
devoted to the user commands, and get about equal coverage. That is, they
provide a good reference source, while offering a minimum of tutorial
information.

The inclusion of a chapter on awk (actually gawk) came as a nice surprise. With
Perl becoming the answer for so many problems, it is nice to see coverage of a
language that is easier to learn and powerful enough to solve a very large
number of problems.

The programming chapter was so brief, I got the feeling O'Reilly included it only
so they could publicize the book as covering programming. The best that can
be said is that it is weak—you just can't cover programming in 35 pages. The
chapter covers the basic commands well enough, but don't expect to find
coverage of subjects such as RCS.

I found the chapters on systems administration to be very strong. The overview
shows what commands do what in only 12 pages. Grouping commands into
logical function areas (managing the kernel, mail, managing file systems, ...)
makes it easy to find the one you need. Once you know which command you
need, you can get more detail from the command usage section in which the
commands are presented in alphabetical order.

Linux in a Nutshell is accurate. This single fact differentiates it from the current
on-line or printed man pages. If the choice is between accurate and
comprehensive, I'll pick accurate every time. Coverage of many important
topics is done in just over 400 pages.

Is this book for you? If you are comfortable with the idea of working from the
command line to communicate with your OS, Linux in a Nutshell is probably a
good choice for you. It provides a reasonable subset of the available Linux
commands plus enough related information (such as that on shells and editors)
to turn you into a competent Linux user.

Sid Wentworth lives in Uzbekistan, where he divides his time between UUCP
hacking and raising yaks.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Programming with GNU Software

Randyl Britten

Issue #38, June 1997

The tools covered are Emacs, the C and C++ compilers gcc and g++, the gdb
debugger, the make utility, the RCS revision control system and gprof, a utility
for profiling and timing your programs.

• Authors: Mike Loukides and Andy Orem
• Publisher: O'Reilly & Associates, 1997
• Pages: 260
• ISBN: 1-56592-112-7
• Price: $39.95; includes CD-ROM
• Reviewer: Randyl Britten

Linux is built on twin pillars. The one we usually associate with Linux is the
kernel developed by Linus Torvalds. And the other, the one we often take for
granted, is the set of GNU tools that make up the portable software
development system from the Free Software Foundation (FSF). Programming
with GNU Software is a brief but thoroughly useful introduction to these tools
and how to use them. The tools covered are Emacs, the C and C++ compilers
gcc and g++, the gdb debugger, the make utility, the RCS revision control
system and gprof, a utility for profiling and timing your programs. The CD-ROM
contains the sources for these tools and compiled binaries for several popular
Unix systems such as SunOS and Solaris for SPARC, HP-UX for HP9000, AIX for
the RS/6000, Irix for Indigo, and DEC Unix for the Alpha.

The book and CD-ROM combination is not specifically intended for Linux users,
but this is an important book for anyone who develops software for Unix or
Linux. This book was described as “forthcoming” in an O'Reilly catalog over a
year ago and I have been eagerly awaiting it since then. If you have a recent
distribution of Linux, you probably already have most or all of the tools
discussed here. Even so, nearly everything in the book, and many of the
sources on the CD-ROM, can be useful to Linux beginners and experts alike. A

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

significant additional benefit is the discussion of cross-compilation and cross-
development for a wide variety of platforms. If you are interested in portable
software or porting applications, embedded systems, or just a good
introduction to the GNU tools, this book is a good place to start.

The libraries on the CD-ROM are not the FSF versions governed by the LGPL (a
General Public License for libraries). The libraries are rewritten versions from
Cygnus Support, a company that ports and supports free software for
commercial use, particularly in embedded systems. Using the Cygnus libraries
avoids the more impractical restrictions of the LGPL for commercial embedded
systems, and Cygnus requires only that you acknowledge use of their software.
If you invent the world's greatest latte maker/bagel warmer, for example, and
use the FSF libraries in the controller, you either have to make the source code
available or provide a way for your customers to upgrade the libraries in case
of a new release. If you have any questions about the legal issues, you should
contact Cygnus Support. Check out their web site at http://www.cygnus.com/.

Using GNU Tools

After an introduction and discussion of free software philosophy in Chapter 1,
Chapter 2 offers a brief introduction to the use of Unix and its traditional tools
for software development. Then Chapter 3 gets into the heart of GNU software
with Emacs. If you have been intimidated by the sheer mass of Emacs, you
should find this chapter an easy way to get started.

The coverage in this book is not simply introductory, but also has depth where
it counts. Even though I've used versions of Emacs for years I learned several
new tricks in this chapter. For example, I like to use the original Kernighan &
Ritchie indentation style in my C programs, and indent by four spaces with each
press of the TAB key. Using an example in the book, I was able to add a
customization to my default initialization file, .emacsrc, in my home directory.
Now, whenever I edit a file that ends in .c, .cpp or .h, Emacs will automatically
be in C-mode, and will indent my programs properly when I press the TAB key
at the beginning of a line. Most of its features and all of its customizations are
written in Emacs Lisp. Emacs itself is mostly an interpreter for this language
and its many extensions. Also covered is how to run the compiler from within
Emacs, so you can continue editing while compilation proceeds in the
background.

The GNU software tools are integrated and work together in a variety of ways,
and Emacs is at the heart of it. Here are some additional incentives for learning
and using Emacs I've gleaned from the book:

1. bash—the default Linux shell—uses Emacs commands for basic
command line and history editing.

2. info—the command often more helpful than man pages—is an Emacs-like
hypertext application that uses a special set of commands for basic
navigation plus many familiar Emacs commands.

3. gdb—a shell in its own right—uses Emacs commands for basic command
line and history editing.

Because of the interoperability between Emacs, bash, gcc, GNU make, RCS and
gdb, learning to use Emacs just makes good sense.

Compiling with gcc

Chapter 4 begins with an overview of the compilation process, including the
preprocessor, translator/optimizer, assembler and linker, plus many other tools
(such as the libraries) that take part in the software development process.
There are many compiler options, optimization levels and intermediate file
formats you can use. Like the rest of the book, this chapter does not attempt to
be a comprehensive reference. Instead, it does a good job of discussing the
most frequently used commands and options, and adds tips that even power
users will appreciate. The chapter ends with an introduction to cross-compilers,
and the requirements for building your own libraries in a cross-development
environment. A table is included that outlines the large number of host and
target systems supported by the Cygnus libraries, and the output formats such
as a.out, COFF and ELF, that can be generated.

Chapter 5 continues with more details about using the C and C++ libraries, and
what is needed to support the system interface to Unix- or Posix-like systems.
So if you are interested in porting Linux to the latest 64-bit PDA or the new
WebTV your aunt just bought on sale, this is the place to learn what it takes.
Keep in mind that these two chapters are not about the C or C++ languages or
how to write programs. Many other books are more useful as learning aids (see
the Resources sidebar). Chapter 5 ends with a brief discussion of the library
licensing issues.

Debugging with gdb

The GNU debugging tool, gdb, is an interactive shell with its own commands,
history (previously executed commands) and editor (Emacs-like, of course). The
basic idea is that you can control and examine the internal working of an
executing process, and interact with its source code and variables. The
coverage of gdb is extensive here, and I have not seen gdb covered with a good
tutorial in any other reference. This coverage alone could be worth the price of
the book.

Building Programs with make

The make utility is used to build programs from multiple sources and compiles
only files in need of updating, based on the date stamps and dependencies for
each file. It is fairly easy to write simple dependencies so that if an include file is
changed, for example, only the files that use it are recompiled; automating
these steps saves time when building a new executable program. The make

utility has been around a long time and has become very sophisticated, and the
GNU make is one of the most comprehensive. The coverage in Chapter 7 is
brief, but is an excellent tutorial introduction that covers both basic and
advanced features. For more in-depth coverage, see the O'Reilly book on make.

Managing Source with RCS

The RCS revision control system is a tool to manage the versions of a program
as it evolves over time. GNU make is aware of RCS, and can automatically use
the current revisions. Again, the coverage is brief but presents sufficient basics
for you to start using them; further details are available in other works from
O'Reilly and FSF.

Profiling with gprof

There are two tools for timing and profiling your programs: time and gprof. The
time command is built into the bash shell and is similar to the timex command
in other shells. It simply gives the elapsed execution time of a program as a
whole, broken down by user and system, with a few additional system details.
The gprof tool is a report generator that can provide detailed information on
where your program is spending its time. The gprof utility can give either a one-
dimensional profile or a two-dimensional accounting that follows the call graph
of your program. The call graph starts with the main() function and has an
execution breakdown for every function called that includes both the time
spent and the number of times the function is called. It even handles recursive
programs. Learning to use gprof is the best way to improve the performance of
your programs. Coverage of this important tool has not been easily available
elsewhere and is another reason why this book is a valuable resource.

Conclusion

What is particularly good about this book is the combination of an excellent
tutorial style that makes it easy for you to get started, and depth that cuts to
the important topics in each subject. Even if you are already experienced with
C/C++ programming using Unix tools, you will find many useful tips. With only
about 250 pages, this is brief coverage, and the one thing I might wish for is a
more complete reference. For that we will have to turn elsewhere, such as the
info pages and the references listed below. I'm sure this book will be a valuable

reference for me for some time. The authors, Mike Loukides and Andy Orem,
are senior technical editors with O'Reilly and have done an excellent job that
rises well above the average for software documentation.

Resources

Randyl Britten is a software developer in Seattle and has an MS in Computer
Science from the University of Washington. He has been tinkering with Linux
since about the time LJ put out its first issue. He also teaches C programming at
UW Extension through the Web. You can find more at http://
weber.u.washington.edu/~instudy, or send e-mail to
britten@u.washington.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2207s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using mSQL in a Web-Based Production Environment

B. Scott Burkett

Issue #38, June 1997

This article provides insight for creating a full-fledged, web-based database
application under Linux, using David Hughes' mSQL package and standard Unix
tools.

Over the past few years, many companies have realized the benefits of using
Linux to serve web content to the masses. The power of a freely available,
feature-laden 32-bit operating system, coupled with a vast number of utilities
and development tools, provides a cost-effective solution for implementing
enterprise and publicly-available information servers.

While many organizations have championed Linux as a web server, few have
taken advantage of perhaps one of the most interesting aspects of the Web:
dynamic content generation and delivery. Think about it. Of all the web sites
you visit on a regular basis, how many of them have static content? Not many.
Many us go to Yahoo! each day to see “What's New on the Internet”. Many
cruise over to catch the news on CNN throughout the day. These sites have
dynamic content. If the listings on Yahoo! didn't change every day, how many of
us would go back after the first visit?

To provide dynamic content to your cyberguests, you can use a variety of tools
and methods. One of the more popular approaches is to integrate data
repositories with the Web. Creating web-based applications that integrate with
existing database pools seems to be the rage this year. This paradigm has led
to some amazing third-party products such as Bluestone Software's Sapphire/
Web (http://www.bluestone.com/) and Haht Software's HahtSite (http://
www.haht.com/). These products provide full development environments for
designing, creating and deploying web-based applications. Unfortunately, the
majority of these products are not yet available for Linux (iBSC options ignored
for the moment). However, there is an alternative.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

You can retrofit a Linux-based web server to provide access to enterprise data
in a very cost-effective manner. Third-party packages typically have an
integrated development environment (IDE) to provide for seamless, somewhat
painless development. This can be easily replaced by your favorite text/HTML
editor. Third-party packages typically interface nicely with expensive,
proprietary database platforms such as Oracle, Sybase and Informix. These
database systems cost thousands of dollars, and generally require a seasoned
database administrator (DBA) to operate efficiently. In our Linux model, we will
employ David Hughes' mSQL engine, which costs a whopping $170 USD, and is
a breeze to use. To fully implement such an approach, expect to spend no less
than $10,000 on the software alone. The Linux/mSQL approach (including the
cost of a Linux CD-ROM distribution, the mSQL engine and coffee) should cost
around $250. Senior management has always had a love affair with saving
money—show them the numbers. It sells itself, folks.

Requirements

In this article, the following assumptions are made:

1. You have a working, fully installed Linux server.
2. You have a functional HTTP server running (NCSA, CERN, Apache, etc.).
3. You have installed either BASH, pdksh or ksh93.
4. You have the standard Unix tools in place (awk, sed, Perl, etc.).

Obtaining the mSQL Package

The first item you need is the mSQL (mini Structured Query Language) engine
itself. The mSQL package implements a relatively fast, lightweight database
engine that uses a subset of the ANSI SQL standard to perform its operations.
As of this writing, the current stable release is version 1.0.16, although the long
awaited v2.0 release has been promised soon. It can be obtained via ftp at ftp://
bond.edu.au/pub/Minerva/msql/. The official home of mSQL is at http://
Hughes.com.au/.

Next, you need the w3-msql package, also written and distributed by David
Hughes. This package provides the CGI (Common Gateway Interface) interface
to the databases managed by mSQL. As of this writing, the current version of
w3-msql is version 1.0, although 2.0 is in the works. It is available via ftp at ftp://
bond.edu.au/pub/Minerva/w3-msql/.

Finally, the example scripts presented in this article are available via ftp at ftp://
www.dcicorp.com/pub/unix/msqlweb/. Unless you are a typing enthusiast and
are already familiar with mSQL, I recommend you snag the examples.

Installation and Compilation

Once you have obtained the distribution archive, move it to either a scratch
directory or the base of your normal source tree. You can extract the package
as follows:

gzip -d msql-1.0.16.tar.gz
tar xf msql-1.0.16.tar

To prepare for compilation, switch to the ./msql-1.0.16 directory and execute
the following commands:

make target
cd targets/Linux*
 ./setup

You will be asked the following questions pertaining to the actual build of the
package. Here are a few notes to guide you:

Top of install tree? While mSQL can be installed virtually anywhere on your
system, you should use the default path, /usr/local/Minerva. It makes installing
third-party add-ons easier.

Will this installation be running as root? This question is concerned primarily
with the TCP port mSQL uses for network communication. If your distribution is
running as root, the default TCP port is 1112; otherwise port 4333 is used. You
can tailor these defaults in the ./common/site.h header file. Also, take a look at
the mSQL FAQ, available at the mSQL web site, which describes a number of
other scenarios this setting affects.

Directory for PID file? Where do you keep your PID files? The default is /var/

adm, which is fine for most folks.

At this point, the script will finish its tailoring process. Before you actually
compile the package, you can perform several customizations by editing a few
of the source files. The first, ./common/site.h, contains such gems as selecting
the German language over English for error reporting. Give it a quick glance
and make sure you are comfortable with the settings. Another possible
modification lies in the ./msql/msql_priv.h file. I like to bolster my database
limits a bit. At the top of this file are several values you can alter to suit your
needs, including the maximum number of fields returned in a query, maximum
number of network connections allowed, and the maximum length for field and
table names. Feel free to modify these as you see fit. For the non-adventurous,
the defaults should suffice.

To compile the package, simply execute the following command from the base
source directory (./targets/Linux*):

make all

Compilation on a Pentium-class machine generally takes a little over a minute.
If there are no compiler errors, you can install the package by executing the
following command:

make install

The system is installed in /usr/local/Minerva (or whatever you set the install
directory to when you ran setup).

Compiling and installing the w3-msql utility is much simpler. After you obtain
the distribution archive, extract it into your source or scratch directory as
follows:

gzip -d w3-msql-1.0.tar.gz
tar xf w3-msql-1.0.tar

Change into the w3-msql-1.0 directory, and remove the -lsocket -lnls

assignment to the make variable LIBS. Linux does not require these libraries to
be linked into the application. Run make, and you are in business. If the build
was successful, simply copy the w3-msql binary image over to your web
server's cgi-bin directory.

Testing

The mSQL server process needs to be invoked during your machine's startup
procedure. Place a line similar to the following in your /etc/rc.d/rc.local file:

/usr/local/Minerva/bin/msqld&

For testing purposes, and to save you a reboot, execute the above command
from the shell prompt. This gets the server process up and running, ready to
handle your database requests.

To make sure your mSQL server has been installed properly, several test scripts
are supplied with the mSQL distribution archive. Finally, make sure you take the
time to look over the mSQL documentation.

Setting up mSQL for Use with the Web Project

As part of this article, a fully functional web-based database application is
presented in its entirety. The purpose is to provide a framework for your own
web endeavors, as well as to show off the ease with which you can construct
these types of applications using standard Unix tools.

Our example focuses on the creation and interaction of a database to contain
concert listings that contains several items of information for each concert.
First, we concentrate on populating the database with a series of concert
listings, then build some web-based queries.

Before we create the database schema itself, we need to determine the
functional elements of the application. What information needs to be stored in
the database? What types of queries will be offered to our web guests? Do we
need the ability to allow additional concert entries to be added through the
Web?

Our database stores the concert date, opening act, headlining act, location and
ticket price. For now, we concentrate on simple queries such as looking up
concerts by band name and location. We also assume the “add” page is either
protected by HTTPD authentication or made available through an Intranet.

The following is the mSQL schema we used to create the concerts database:

create table notices (
 show_date char(10),
 headliner char(30),
 opening_act char(30),
 location char(30),
 ticket_price char(10)
)

To create the sample database and load it with initial data, execute the
mkconcerts script located in the examples archive. For those of you who don't
have ftp access, the data are shown in Listing 1.

Listing 1. mkconcerts Script

To verify that the data have been loaded properly, execute the mkreport script
(see Listing 2. mkreport Script), which is also in the examples archive. This script
simply dumps the contents of the database into a formatted table, called
concert.listings, shown in Listing 3.concert.listings File

Web-Based Interaction with w3-msql

Now that the database is created and populated with test data, it's time to
begin constructing HTML pages that interact with the database. (Keep in mind
that this article is intended to supplement but not replace the documentation
that ships with mSQL and w3-msql.)

w3-msql acts as an HTML “preprocesser” of sorts. It takes a standard HTML
document and performs database actions based on embedded mSQL
primitives as shown in Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l3.html

Figure 1. Process Flow

As a first example, consider the HTML document named ex1.html, shown in
Listing 4. HTML Document with Embedded mSQL Commands, which
demonstrates a simple link to a document containing embedded mSQL
commands.

Note the calling procedure. The document name is placed immediately after
the invocation to w3-msql (PATH_INFO). w3-msql takes this document, looks for
any embedded mSQL commands and sends the appropriate output to the
client. In this case, we are requesting the query1.html document, which
contains the HTML shown in Listing 5. HTML Document. When selected, the
output of the w3-msql link is shown in Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l5.html

Figure 2. Output of ex1.html/query1.html

While the previous example is rudimentary, it demonstrates the ease of
presenting information from an mSQL database. Let's continue with this
example by expanding our queries. One nice feature to implement is the ability
to produce a listing sorted by a specific field. Consider the following rewrite of
our ex1.html file, which adds several hypertext links, each sorted on a different
field. The file, called ex2.html, is shown in Listing 6.

Listing 6. HTML Document

Note the addition of the ?sortby=?????? parameters. We create new variables,
make an initial assignment, and pass that, along with the document name (now
called query2.html), to w3-msql. We use the sortby variable to contain a field
name on which we wish to sort the listing.

Now that we have coded the skeleton for the front end, what changes are
needed to the actual query template? Consider the rewrite of query.html, now
appropriately called query2.html, shown in Listing 7.

Listing 7. HTML Document query2.html

The only major change is in the mSQL select statement. We added the standard
ANSI SQL order by clause, passing along the content of our new sortby variable.
In addition, note the use of the mSQL print command to display the sort field
name in the header above the table. A sortby location displays the HTML table
shown in Figure 3.

Figure 3. Concert Data Sorted by Location

https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l7.html

To finish our simple query example let's revisit the concept of searching by
location. Let's allow the user to input a city name manually, and pass it along to
w3-msql for querying. Consider the simple HTML document, called ex3.html,
shown in Listing 8. It provides an input field in a form, linked to w3-msql as the
form processor.

Listing 8. HTML Document ex3.html

The query3.html document, which handles the actual query-by-city is shown in
Listing 9. Note the change in the mSQL select statement. We use the contents
of the form field in the ex3.html document as the value of a where-like SQL
clause.

Listing 9. HTML Document query3.html

To test this form, enter New York as the city name—Figure 4 shows the output.

Figure 4. Form-based Query Results

That about sums it up for performing simple queries to a mSQL database. Try
experimenting with different tables and interface designs. Try using frames.
Place a search form in one frame and the query results in another. The
possibilities are endless with the Linux/mSQL approach.

B. Scott Burkett formerly a Unix system programmer and technical instructor, is
the Internet Services Manager for Decision Consultants, Inc, one of the largest
software services consulting firms in the country (http://www.dcicorp.com). He
enjoys major league baseball (Go Braves), good jazz bars, tinkering with Linux,
and derailing military conspiracy plots in third world countries. He can be
reached via e-mail at scottb@dcicorp.com.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l8.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2206l9.html

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Creating a Multiple Choice Quiz System, Part 2

Reuven M. Lerner

Issue #38, June 1997

Designing our CGI quiz to be more robust and to include error checking.

Two months ago, we began to write a simple multiple-choice quiz engine in
Perl. Virtually all of that column covered the nuts and bolts of the engine—
creating the QuizQuestions object and the programs using that object to create
a simple multiple-choice quiz, as well as to check its answers.

The end result was two CGI programs. The first, askquestion.pl, creates an
instance of QuizQuestions and uses it to select a random question, which is
then turned into an HTML form that is sent to the user's browser.

The other program, checkanswer.pl, accepts the submission of this form from
the user, and then checks that the user chose the correct answer.

Even more important than the QuizQuestions object is the “quiz file”, an ASCII
text file containing three different types of items:

• Comments beginning with a hash character (#). Comments are ignored by
the quiz engine. Therefore, questions must not begin with #, but we can
use # inside a question or answer without having to fear that the end of
the question will be chopped off.

• Whitespace, such as spaces, tab characters and carriage returns that are
also ignored. We allow for whitespace because users will undoubtedly
separate items in the quiz file with blank lines, for example, and we need
not require them to comment out the lines.

• Question records containing the questions and answers for the quiz. Each
record contains the text of a question, followed by each of the four
possible answers, and then by an A, B, C or D, indicating the correct
answer. The fields in each record (question, answer 1, answer 2, answer 3,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

answer 4 and the correct answer) are separated by tab characters, and so,
neither questions nor answers can contain tabs.

A sample quiz file that tests users on their knowledge of the GNU Emacs text
editor is shown in Listing 1. While this may not be obvious on paper, it is
important to remember that the fields within each line are separated by tab
characters, not by spaces.

One of the main flaws with the original quiz system was that it depended on
the ability of users to create quiz files that conformed to these standards.
Moreover, the QuizQuestions object didn't check for errors in format when
reading the quiz file.

This month we take a look at how we can make the quiz system a bit more
robust, while staying within the confines of the CGI standard.

Checking for Errors

First, we will modify the definition of QuizQuestions so that it checks for errors
while loading the quiz file. What sorts of errors could we have it check for? One
simple test ensures that each non-commented, non-whitespace line contains
exactly six fields (one question, four answers and one answer key). Lines having
a different number of fields will be flagged as errors.

Listing 2

The original version of QuizQuestions.pm is shown in Listing 2. To make sure
that the quiz file is correct, we have to modify methods that read from the quiz
file—which in this particular case, means the new method, the constructor for
QuizQuestions. We can create a new instance of QuizQuestions with the
following line:

my $quiz = new QuizQuestions("emacs");

Before we decide how to check for errors in the quiz file, we should think about
how errors should be reported. If a method within QuizQuestions.pm discovers
an error in the quiz file, should the method produce an HTML response for the
user to see? Should it fail, calling die and indicating the error in the HTTP
server's error log? Should it do both?

I suggest that QuizQuestions.pm should not use either of these options, since
both violate the abstraction that we have created. QuizQuestions is an object
for manipulating questions within a quiz file easily, and does not “know”
whether it is being used from within a CGI program. Methods within

https://secure2.linuxjournal.com/ljarchive/LJ/038/2224l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2224l2.html

QuizQuestions should report errors, when they occur, to the calling program
rather than directly to the user.

If we were using a language such as Java that includes an extensive exception-
handling mechanism, this would be a perfect time to use it; we don't want the
calling routine to receive a return value that could be misinterpreted as a
legitimate value for $quiz. At the same time, we do want to return information
about any errors that have occurred.

Perl's exception handling isn't as extensive as that of Java. Luckily, though, Perl
does permit assigning various types of data to the same operator. In this case,
if the file contains no errors, new returns a new instance of QuizQuestions. If
there are errors in the file, new returns a string that consists of the line
containing the error. It could simply return 0 in such cases; however, since we
have the flexibility to return any scalar value, it is better to return a value that
encodes more information.

Now that we have determined that error messages will be sent back to the
calling method, let's think about how to determine which lines in the quiz file
contain errors. Fortunately, this is a simple problem to solve, since each non-
comment, non-blank line of a quiz file should contain exactly six tab-separated
fields. Thus, if a line is not a comment, is not an empty line and does not
contain six fields, it must be an error and should generate an error value.

Here is the loop in the existing version of new inside the QuizQuestions object
that loads the quiz file from disk:

Loop through the question file while (<QUESTIONS>)
{
 next if /^#/; # Ignore comment lines
 next unless /\w/; # Ignore whitespace lines
 chomp;
 # Add this question to the list.
 $questions[$counter++] = $_;
}

To check for errors, we simply break each line into its constituent fields using
the split operator and count the number of list elements. If that number is not
six, then we have a syntax error to be reported by returning the offending
string to the calling routine. Here is a modified version of the above loop that
implements this strategy:

Loop through the question fil,e
while (<QUESTIONS>)
 {
 next if /^#/; # Ignore comment lines
 next unless /\w/; # Ignore whitespace lines
 chomp;
 # Split the line across tabs
 my @list = split(/ /);
 # Check to make sure that there are six fields
 if ($#list != 5)

 {
 # Return the line containing the error
 return $_;
 }
 else
 {
 # Add this question to the list
 $questions[$counter++] = $_;
 }
}

This code is the same as the original while loop with only one difference. Before
adding the current line, $_, to @questions (an array containing questions and
answers from the quiz file), we split it at each tab, creating a list with one
element per field in the quiz file. If the list contains six elements, then this line
of the quiz file is acceptable, and we continue with the original version of new--
adding the current line to @questions, incrementing $counter, and moving on
to the next line of the file.

If the list does not contain six fields, the line obviously contains an error. By the
time we perform this test, we have already eliminated the possibility that the
current line could be a comment or solely contain whitespace.

But wait a second—the caller is expecting to receive an object of type
QuizQuestions in return. Because the QuizQuestions object can return many
different kinds of scalar data, we have to make sure that the caller can
determine whether the method invocation was a success (i.e., an object was
returned) or a failure (i.e., a string was returned).

In this case, we use Perl's ref operator to find out if a scalar is a reference to an
object and what kind of object it is. Invoking ref on a non-object scalar returns
an empty string, which makes such testing easy. So, in the above version of
new, we can create an instance of QuizQuestions with this code:

my $questions = new QuizQuestions("emacs");
&log_and_die($questions) unless (ref($questions)
 eq "

The second line checks to see if $questions is an instance of QuizQuestions. If
not, we call &log_and_die, a routine (included in in Listing 5) that provides nicer
logging of errors than a simple call to die.

While this code works, it makes for a poorly designed object. After all, why write
the constructor so that the caller has to test the type of the object it returned? A
better solution is to make new a minimalist creation method, and put the
quizfile-loading mechanism into another method, called loadFile. This new
method could then return either 0 indicating no error or a string containing the
offending line.

With such methods in place, we write:

my $questions = new QuizQuestions("emacs");
my $error = $questions->loadFile;
&log_and_die($error) if $error;

This code creates an instance of QuizQuestions using the new operator, which
does only the bare essentials. We load quiz file with the loadFile method. The
loadFile method returns either 0, indicating that the file was loaded
successfully, or a text string containing the line that caused a problem.

Since we modified loadFile to deal with errors, I have replaced the original uses
of die which are inappropriate in a low-level object, (as mentioned earlier), with
calls to return.

Rewritten versions of new and loadFile are shown in Listing 3.

Creating the Quiz File

So far, we have dealt with ways in which the QuizQuestions object can handle
syntax errors within the quiz file. But many syntax errors are created simply by
mistake or by users unfamiliar with the defined file format.

One solution is to provide users with tools for creating quiz files with fewer
errors. Given the amount of time we spend writing CGI programs and HTML
forms, it makes sense to create a short program that takes the contents of an
HTML form and saves it to disk.

An example of one such form is shown in Listing 4. Upon submission, the
form's contents are handed to create-quizfile.pl, which then creates a properly
formatted quiz file.

In order to implement this feature, we need to add two new methods to
QuizQuestions. One, addQuestion, takes a six-element list and adds it to
questions, the instance variable containing fields from the quiz file. The second
method, saveFile, does the opposite of loadFile, taking the current questions
and saving them.

Here is one possible implementation of addQuestion:

sub addQuestion
{
 # Get ourselves
 my $self = shift;
 # Get our arguments
 my ($question, $a1, $a2, $a3, $a4,
 $correct) = @_;
 # Turn our arguments into a string
 my $new_question = join(" ", @_);
 # Get our instance variable
 my @questions = @{$self->{"questions"}};
 # Add the new question
 push (@questions, $new_question);
 # Reset the instance variable

https://secure2.linuxjournal.com/ljarchive/LJ/038/2224l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/2224l4.html

 $self->{"questions"} = \@questions;
 # Return successfully (= 0)
 return 0;
}

This version of addQuestion is fairly simple, if not very robust. For instance, it
doesn't check to make sure the correct answer is one of A, B, C or D. But it does
let us add new questions to the QuizQuestions object. Notice that addQuestion

both retrieves and sets values for the instance variable questions.

If we were interested in extending our quiz on Emacs, we could use
addQuestion in the following way:

my $error = $questions->loadFile;
&log_and_die($error) if $error;
$questions->addQuestion(
"What term describes the cursor's current location?",
 "mark", "point", "cursor", "mouse", "B");

Immediately after executing this code, $questions contains one more question.
However, this question is lost upon the program's exit, because we have not yet
saved the new question to the quiz file. In order to save the questions to a quiz
file, define saveFile like this:

sub saveFile
{
 # Get ourselves
 my $self = shift;
 # Open the questions file for writing
 open (QUESTIONS, ">$questionDir" .
 $self->{"quizname"}) ||
 return "Could not open " .
 $self->{"quizname"} . " for writing";
 # Loop through the questions
 my @questions = @{$self->{"questions"}};
 my $question;
 for each $question (@questions)
 {
 print QUESTIONS $question, "\n";
 }
 close(QUESTIONS);
 return 0;
}

This code iterates through the questions, and writes them to the quiz file. Since
we are writing all of the questions to disk rather than appending them, we use
the > when opening the file, thereby overwriting any data that existed
previously.

Since saveFile saves only the contents of the questions instance variable, it
effectively obliterates comments and white space in the file. Of course, anyone
creating the quiz file using a program is unlikely to look at the comments.
Nonetheless, a more refined version of saveFile and the QuizQuestions object
might let users add comments and white space to the file, as well as questions.
(Obviously, the HTML form would also have to allow for this.)

Our version of saveFile uses the same system for reporting errors as loadFile--
by returning a string, while the lack of an error is indicated by returning 0. This
lets us use the following code:

$error = $questions->saveFile;
&log_and_die($error) if $error;

Now that you have seen the skeleton for create-quizfile.pl, you should have a
good understanding of the program shown in Listing 5. This version of create-
quizfile.pl is fairly straightforward. It checks to see if the user entered a
question; if there is text for a question, it takes the remaining parameters from
the HTML form submitted.

Now is a good time to remember that CGI programs that write user-defined
strings to your file system are potentially dangerous, and thus must be placed
in locations that are restricted to authorized users, either by using your HTTP
server's built-in protection or by placing such programs behind a firewall. No
matter how unlikely this may seem, a user may eventually discover that you
have a program named create-quizfile.pl, and create quizzes on your system,
possibly overwriting your creations.

This month, we made our quiz engine friendlier for non-programmers by
checking the integrity of the quiz file and by allowing users to create quiz files
using HTML forms. What happens when users want to edit quiz files? For now,
they are stuck modifying the file on disk, which again opens Pandora's box of
potential syntax problems. While we can discover these problems with our
simple error-checking code, it might be a good idea to create a program that
can edit quiz files as well as create them. Next month, we will modify create-
quizfile.pl to do just that, making our quiz system easier for everyone to handle.

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. He can be reached via
e-mail at reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/038/2224l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Marketsmith

Doc Searls

Issue #38, June 1997

Flack Jacket: Observations by a renegade publicist from Doc Searls' on-line
magazine, Reality 2.0.

Wired Wants to Fertilize Your Inner Potato

The March Issue of Wired, the computer industry's utopian fashion monthly,
declares its wish to supplant the Web with media more suited to advertising. In
a “special bulletin” by Kevin Kelly and Gary Wolf, and with its customary
overstatement and retinal-torture colors, the magazine devotes its cover and
the eleven pages that follow to “PUSH! Kiss your browser goodbye: The radical
future of media beyond the Web”--a manifesto on the “emerging universe of
networked media that are spreading across the telecosm.”

This universe doesn't exist yet, so Wired evokes its promise with the language
of a sci-fi movie trailer: “Think video. Think text flickering over your walls. Think
games that work. Think anything where a staid, link-based browser is useless.”
Imagine “a zillion non-page items of information and entertainment.”

The Web, sadly, is just “an archive medium”. It's “a wonderful library,” Wired
says, “but a library nonetheless.” Hey, who wants to surf in a public building?
What today's Netizens really want is “a land of push-pull, active objects, virtual
space and ambient broadcasting.”

This land won't rise from the work of the ordinary schlubs who now fill the
Web's library with goods that offer rather than push. No, this Shangri-La will be
summoned from the void by “20-year-old hot shots in the labs of PointCast,
ESPNET, SportsZone and CNET.” Thanks to their pioneering genius, the browser
is already “dying as the main event, to be reborn as a subsumed function and
occasional option.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Even though “the design of what is emerging...is now neither clear nor
important,” Wired is sure it will let you “move seamlessly between media you
steer (interactive) and media that steer you (passive).”

Let us pause to observe that the notion of media that steer you was never part
of the Net's—or any other media's—appeal. The Internet's success owes exactly
nothing to those who would use it for manipulation.

But I'll hand it to the editors of Wired: when they sell out, they go all the way.
Not long ago, the magazine wrote an April Fool piece on “The death of the
Web”. Now they mean it. “It turns out only a handful of us are up for the
vigorous activity of reaching out to engage the world,” they say. “Most of us are
still addicted to passive media.” Which, it turns out, is a good thing, because
“there's a little couch potato in all of us.”

Pity the poor spuds forced to face “information framed on a two-dimensional
hypertext page,” and to “navigate blind clickable links and search engine
requests, drilling down to try to find what they want.” No wonder such labor-
intensive tools are “retreating into the bowels of the Net.”

Wired wants your inner potato to enjoy “a more full-bodied experience that
combines many of the traits of networks with those of broadcast.” This
combination is what our young farmers call push media: “content is pushed to
you, in contrast to the invitational pull you make when you click on the Web.”

“The central mission” of this new agriculture “is to shoot every conceivable
media flavor across, through, in between and around a network that includes
every possible hardware device.” What you get will be “in-your-face, immersive,
experiential push media.”

The editors say “at first glance all this looks a lot like the revenge of TV.” At last,
from beneath the Web's riot of voluntary vegetation “the subterranean instincts
of couch potatoes rise again!”

Wired tells us “push” has been with us since the Dawn of Art. In journalism, for
example, “once you dive into a story...the author pushes you along, and the
magazine steers.” At movies you “surrender to the director's manipulation of
your emotion and your mind.” Indeed, art is a pushy business.

And thankless too. Consider the pitiless consumers whose constant rejection
the pushers endure. “In the competitive jungle of 500,000 channels”, today's
pushiest media are subject to “the relentless interactive tick of the zapper.”

“That almost neurotic urge to zap,” Wired says, “has falsely led people to think
that what viewers want is more zapping, more control, more steering. What
they want instead are more ways to zap.” Enter “the emerging postbrowser
interfaces” that “create different ways to play human attention.”

Sadly, the Web is too demanding for the average spud. “Web users suffer a
sense of being lost and overwhelmed.” More than half of them have given up
surfing, Wired laments, because they just hit the same old sites, or they find
“the signal is camouflaged by all the noise.”

That noise is made by spuds whose web content is second-rate, or worse, kind
of a hobby. They've turned the Web into a craft fair of bad watercolors and
lopsided ceramic bowls, where such in-your-face ties as those created by the
artisans at Wired are all too rare.

“Yeah, rolling your own is very rewarding, but often we'd like someone else to
slip us a ready-made. Even though it may not be as nifty as the one we made.
Or maybe because it is niftier and better made.”

Trust your inner potato. “Seinfeld viewers know what we're talking about.”
Television succeeds for a good reason. “You dial it for a mainline fix of
unadulterated push. It's great for that universal plunge into the Thing Larger
Than Myself.” (Seinfeld? Are we that small?)

And so “we are now about to arrive at television (push media), before we finally
emerge into what interactivity is really about.”

Ah, so all this push business is really just television, only better—more
“ambient”, more “ubiquitous”, more “sexy”, more of a “warm, familiar, fuzzy
convenience”. Well, that brings us to the big question: Who is going to pay for
all this?

Advertisers, of course. “Advertisers and content sellers are very willing to
underwrite this,” Wired says, even though they would be wrong to “happily back
push media in hopes that the spells that work on TV will work there too.” But
hey, advertisers are easily hypnotized, too. “Push has advertisers transfixed,”
the editors say. “In the short run, advertisers can be counted on to pile in.”

This from a company that hasn't been able to sell an IPO because even the
ravenously credulous investors who are driving stock prices to the sky don't
buy their magazine's inflated estimates of itself.

Well, let me tell you about advertising.

Before some of today's push geniuses were born, I co-founded what is now one
of Silicon Valley's biggest advertising agencies. My name is still on the door.
That agency does many millions of dollars in annual billings, mostly in print.
Some of it, I suppose, runs in Wired.

Advertising is a product of scarce access to large numbers of customers and
prospects. Since the Dawn of Advertising, The Media have been the sole
providers of that access, and they've charged a lot for it.

But when companies find ways to interact directly with customers and
prospects, they will shoot resellers, distributors, retailers, advertising media
and every other margin-demanding intermediary that stands in the way. In fact,
the shooting has already started. The result is a new trend called
disintermediation. It's a lot more scary than downsizing, because it starves
whole companies and business categories, rather than just a few employees.

The most threatened businesses are the ones that depend on advertising. This
is why the last thing ad-supported media want is an efficient market for
product information. But that's exactly what the Net provides.

The lights Wired sees at the end of the Web's dark tunnel are miner's lamps of
countless companies digging toward their customers. They're digging with the
same Internet tools Wired now demeans, including the Web, browsers and e-
mail. These tools cost squat, and they do an amazing job.

In the face of this, advertising has an existential choice: help dig or get shoveled
aside.

The shoveling will be easy. The advertising we all know and hate is a huge and
often wasteful expense that most CEOs can downsize or ax with few immediate
penalties. Some executives and suppliers might lose their jobs, but the SEC and
IRS won't even notice.

And don't think the Big Boys aren't looking carefully at the issue, even if they
share Wired's da-glo wet dreams about “immersive media” and “ambient
advertising”.

Two years ago at PC Forum, John Warnock of Adobe observed that ads in The
Wall Street Journal waste lots of trees and deliver no obvious results, while a
single notice on the company's web site brings thousands of downloads and
countless useful customer relationships. And Warnock is one of the guys who
appreciates image building, branding, positioning and other advertising arts.

The Net shortens the distance between supply and demand, both for products
and for information. What Wired calls “a vast unmapped cave of documents” is
the most powerful marketing resource ever created, because it can deliver
deep and rich marketing content on demand—especially once it's mapped.

Does Wired really think “spelunking” with search engines is the terminal stage
of network organization, and that what traditional LANs call “directory services”
won't show up soon? (For clues about where all this going, check out Netscape's
LDAP White Paper and a Bulldozer Through the Intersection in Reality 2.0:
http://www.batnet.com/searls/bulldozer.html.)

There is something huge happening on the pull side of more markets than
Thomas Register can list. It's not creating dumb web pages and not surfing
around for entertaining distractions. It's demanding useful information,
contacting suppliers directly, and treating as garbage everything that doesn't
add value. That garbage will include much of today's advertising and the media
that depend on it—unless, of course, they evolve to life forms that survive what
in TechnoLatin we might call “the emerging demand-driven information
environment”.

By demeaning both the supply and the demand sides of markets for everything
other than narcotic entertainment, Wired sets new altitude records for stupidity
and arrogance. If the magazine had any moral content in the first place—and I
have to believe they did, given a masthead that still includes Stewart Brand,
John Perry Barlow, Esther Dyson, John Heileman and other advocates of
freedom and self-worth—they forfeited it with this contemptible tract.

What Wired editors hail is really a postmodern Invasion of the Body Snatchers.
It treats Netizens not only as vegetables, but as hosts for its advertisers' pods.

Fortunately, advertisers live in reality. I hope they give these fools a dose of it.

Doc Searls is President of The Searls Group, a Silicon Valley consultancy, and a
co-founder of Hodskins Simone and Searls. He has been writing on technology
and other issues for most of his life. The Flack Jacket series of essays are
collected in Reality 2.0, http://www.batnet.com/searls/docworks.html). Other

series are Positions and Milleniana. He can be reached via e-mail at
searls@batnet.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #38, June 1997

Readers sound off.

Where is the E-mail Address?

Just got my comp copies today of the 3/97 issue. Thanks very much. It's always
a thrill getting those first copies of a published work.

I am very disappointed on one count, though. My e-mail address was removed
from the short bio at the end (page 72). All my esteemed fellow authors
included their e-mail addresses, so I assume it was an unconscious mistake on
some editor's part. (Not to excuse it; careless mistakes are the most
preventable and least forgivable variety in my book.)

Funny thing is, I'm decidedly unimpressed with authors who avoid interaction
with their readers. They abdicate the stewardship of knowledge their work
otherwise earned them. Now I'm involuntarily guilty of this very sin. The main
reason I write articles is to try to make contact with forms of intelligent and
enlightened life out there. I missed my chance this time. I guess my lesson for
the next time is to insist on a review copy.

In all other respects, it's been a real pleasure working with you folks. Mary
Webber, by the way, is wonderful. —Bob Stein bobstein@earthlink.net

Polygon Code

Much to my surprise, I found that in the article “A Point About Polygons” by Bob
Stein in the March 1997 issue of Linux Journal, the code in Listing 2
(TESTPOLY.C) was specifically written for Turbo C and the DOS environment. As
it was apparently coded back in 1995, one may assume that Stein has since
discovered a more mature development platform, but I do hope this is not to
be taken as a subtle shift of focus on the part of the editors of LJ. —Robert V.
Schipper rvs@gol.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Author Responds

Thanks for writing, Robert.

You're quite right, TESTPOLY.C was for the Borland/DOS environment. At
Galacticomm we've been using Borland's command line development
environment for some time, and we continue to do so for both the DOS and NT
versions of Worldgroup. So at the time, it was convenient, taking me only an
hour or two to use.

If you're hoping I've seen the light and started using Linux I'm afraid I'll
disappoint you. Lately I've been using Microsoft's Visual C++ and Sun's Java for
graphics programming. I assume my article was accepted for its Websmithing
theme [Yes, that's why—Ed.]. —Bob Stein bobstein@earthlink.net

No Dialtone on Modem

I was reading the article titled “Setting Up UUCP” in issue 35, and noticed the
author was wondering why his modem dials when there is no dial tone. I have
discovered over the years that some modems return:

NO DIALTONE

while others return:

NO DIAL TONE

So, including a line:

chat-fail NO\sDIAL\sTONE

would probably solve his problem. —Scott Barker scott@mostlylinux.ab.ca

MostlyLinux

I am very disappointed that after twice sending information to you guys about
my company (the second time was actually about a dozen copies of the same e-
mail, sent every week or so until I finally got a reply), you still got it wrong. My
company is MostlyLinux, but my entry in the Linux Journal 1997 Buyer's Guide
lists me as “Calgary UNIX Users Group”, with my phone numbers, but with their
snail-mail address instead of mine, and my e-mail address through them rather
than through my own company.

This is going to cause confusion both for myself and the Group (with whom I
volunteer, and on whose behalf I have dealt with SSC, which may have caused
confusion on your part). I remain a loyal reader of Linux Journal (which I find

very useful), but am very unhappy that I am going to have to deal with the
problems this creates. For future reference, if you intend to publish another
Buyer's Guide, please note that I am: —Scott Barker MostlyLinux, Inc. Voice
Mail: 403-209-9406Fax: 403-285-1399E-mail: info@mostlylinux.ab.ca URL:
http://www.mostlylinux.ab.ca

Craftwork Solutions

We just received our copy of the Linux Journal 1997 Buyer's Guide. I feel this
type of effort is very good for the industry. Craftwork Solutions is focused on
making Linux an accepted commercial solution for businesses. We are glad to
see SSC make the effort to explain to the general public the benefits of using
Linux.

What did trouble me came at the end of the issue. Craftwork Solutions
announced back in Sept/Oct '96 our 2.2 release for both the Intel and Alpha
architectures. We were across the aisle from SSC at Comdex in November '96,
showing our 2.2 releases. Unfortunately, your table included only the out-of-
date information on our 2.0 product.

You made room for both the 3.0 and 4.0 releases of Red Hat. I would have
expected that at least our 2.2 information would have been used! Craftwork
Solutions has advertised with LJ since 1995. I would very much like to
understand how this oversight occurred.

Your publishing of our old data makes us look like a company that is not
concerned about the direction of the industry and not interested in providing
the best product and support to its customers. I personally take that very hard.
My staff worked long weeks during the summer to have the new releases ready
for Comdex.

I realize the information we filled out for you back in May '96, reflected the 2.0
product. What confuses me is that the Red Hat 4.0 wasn't available back in May
'96 either. Please explain to me how this mixup occurred, and how we can
prevent it from occurring in the future. —Lee Morse, Chief Technology Officer
lmorse@craftwork.com Craftwork Solutions, Inc.

Data is Our Life

This was our first buyer's guide and we made some mistakes, but we learned
from them and plan to have an even better issue next time. One of the things
we are most concerned about is data gathering methods. For this issue, other
than the sunsite listings, we printed only what was sent to us. If you did not
send in updated information, we would not have updated it for you. Red Hat
obviously did send in updated information. If you did send in updated

information, then I apologize for the table not getting updated. Actually, in
either case, I apologize. Next time, we'll include a check for the latest
distributions in our procedure. We do know what the current distributions are.

File Locking Services

Mr. Kraft's comments in the March 1997 issue of Linux Journal, regarding
Linux's lack of network file locking services, are dead on the mark; however, I
would now like to make it publicly known that there is an ongoing development
effort to provide a lockd and statd for Linux.

This effort is currently combined with an effort, led by Olaf Kirch, to revise
major portions of the Linux NFS implementation. A kernel-space lockd, written
by Olaf, and a user-space statd, initially written by me and then significantly
modified by Olaf, are currently part of Olaf's NFS development distribution
“snapshots”.

A developers' mailing list exists for people who wish to contribute to, or
participate in the alpha/beta testing of, this development effort. The list
address is lockd-statd@linux.nrao.edu, and the list's subscription address is
majordomo@linux.nrao.edu. Current snapshots of the linux-nfs development
code can be retrieved from the following anonymous FTP directories:

ftp.mathematik.th-darmstadt.de:/pub/linux/okir/dontuse/ linux.nrao.edu:/pub/
people/linux/okir/dontuse/

There are currently plans to publish an introduction to network file locking,
together with a description of the Linux implementation, in an upcoming issue
of Linux Journal. In addition, I will be giving a short presentation on this subject
at the April 1997 Linux Expo in Raleigh, North Carolina. —Jeff Uphoff
juphoff@nrao.edu

Security Issues

If you are going to do a security article, get it right. People get cgi and suid
programs wrong on their own without your printing an article that contains
serious errors. A good article on cgi security would have been just what is
needed. Unfortunately this wasn't it.

Let's take this:

exit(system("/home/foo/www/bin/counter.sh"));

If I run this handy provided example by doing:

cd HACKDIR
cp /bin/hash ./home
ln -s suidxi—program ./foo
IFS='/'
export IFS
 ./foo

I get a shell as the person it is setuid to.

Why? Because the system runs the command through the shell, and the shell
uses IFS as its “white space” definition.

This is basic setuid security stuff.

The procmail-based example at least does use a magic cookie to stop fake
mails. It has other bugs; notably, it forgets sendmail may deliver multiple mails
in parallel using data, but then I guess it makes it plain it's just trying to show
the trick, not do it right. —Alan Cox alan@cymru.net

On-Line Linux Users Group

Hi. I have been a longtime reader of LJ and it has been a great help to me, and I
am sure that applies to many in the Linux Community! Now, my friends on the
Net and I have also done something as a contribution to Linux which I thought
would be interesting to you and helpful to your readers. We have created an
On-Line Linux Users Group for people interested in learning more about Linux,
providing help to other Linuxers, and promoting Linux:

http://www.linuxware.com/ —Peter Lazecky peter@linuxware.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LG and IELG

Marjorie Richardson

Issue #38, June 1997

I recently did an e-mail interview, in the guise of Editor of Linux Gazette, for the
Italian Edition of Linux Gazette.

I recently did an e-mail interview, in the guise of Editor of Linux Gazette, for the
Italian Edition of Linux Gazette. I know it sounds strange, but the Italian edition
is basically our LG with a few additions such as this interview. (I really wasn't
interviewing myself.) Since I wanted to talk about LG this month anyway, I
thought presenting the interview would be a good way to do it. The questions
were presented to me by Francesco De Carlo, a member of the faculty of
Computer Science at University of BARI, Italy and the Director of the Italian
Edition of Linux Gazette, which can be found at www.media.it/LUGBari/
index.html. Mr. De Carlo can be reached via e-mail at
fdecarlo@mailbox.media.it.

Mr. De Carlo: When and why did SSC decide to publish Linux Gazette in the
current version? Originally, LG was edited only as an extra-curricular activity by
John M. Fisk.

Margie:During the summer of 1996, John Fisk decided he no longer had the
time to keep Linux Gazette up in the fashion it deserved. LG had become very
popular, and readers were wanting it to come out on regular monthly basis.
Between school and work, John just didn't have time to do this, so he put out
feelers looking for someone to take it over. We responded and he accepted us
as the right people to continue LG.

SSC responded to John because we had always felt that Linux Gazette was a
worthy and necessary asset to the Linux community. We did not want to see it
either go away or be taken over by someone who would turn it into a
commercial enterprise. We promised John that LG would remain free and it
has.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Mr. De Carlo: What kind of relationship does the LG have with his “big brother”
Linux Journal? Some exchanges of articles, writers, ...?

Margie:Yes, Linux Gazette and Linux Journal do a lot of sharing. As of February
1 of this year, I am Editor of both Linux Journal and Linux Gazette. Every month
we use an article from LG in Linux Journal, and occasionally, I will use articles
from LJ in LG--usually those about conferences and other events surrounding
Linux. And yes, I have authors who write for both magazines, most notably the
regular contributors of columns to LG: Larry Ayers, John Fisk and Michael
Hammel. Linux Gazette's Answer Guy, Jim Dennis, has done an interview with
Stronghold's Sameer Parekh, which will be appearing in the July issue of Linux
Journal.

Mr. De Carlo:: Are authors wishing to write for LG contacted by you or do they
send articles to you? That is: do you prepare a list of the subjects that will be
discussed in the next issue of LG, or can users send you any article, on any
topic?

Margie: LG is managed very casually; authors can send me articles on any topic
and I will include them. Whatever comes in during the month goes in the next
issue. There is no focus other than Linux. Also, I do not edit the articles; they
are posted just as the authors send them.

Mr. De Carlo: Are you alone in producing LG? Or do you have a real “editorial
office” with real “editors” and “reporters”? If yes, how do you make it function?

Margie: I have no real editors or reporters to help. I depend on outside authors
in the Linux community to make their contributions, and the wonderful thing is,
they do. Some months I have more material than others (January was really
packed), but I've never been short. I have gotten a lot of help with graphics and
HTML from SSC's webmaster, Michael Montoure. Beginning this month, I have a
new assistant, Amy Kukuk, who will be helping out by doing the News Byte
column and perhaps more.

Mr. De Carlo: What are your plans for the near future? Introducing a new LG
with a renewed graphic look, new articles and so on?

Margie: I intend to continue posting Linux Gazette each month and promoting
it wherever I can. I feel it is even more of an asset than ever to both new and
experienced Linux users.

Our look seems to change periodically. With the March issue, we dropped the
spiral that caused so many problems. Michael is inventive, and we mainly add
things as we come up with them.

We have two new columns that will be appearing regularly, “The Answer Guy”
by Jim Dennis, and “Clueless at the Prompt, A Column for New Users”, by Mike
List. Both columns are good for new users looking for help.

Linux Gazette is free for the readers, but is not free for SSC. To help defray the
publishing cost, LG has begun accepting sponsors. A small acknowledgment of
these sponsors will be made on the Front Page. Our first sponsor is InfoMagic—
our thanks to them for their help.

Mr. De Carlo: What do you think about our LGEI? Is it a good idea and, above all,
can it help Italian Linux users to better understand this OS?

Margie: I think LGEI is wonderful! It'a great way to spread the word about Linux
to all Italy. With our regular columns and articles, as well as all the tips and
tricks people send us, I feel LGEI is an invaluable resource to Italian Linux users,
just as our English version is to Linux users worldwide.

Marjorie Richardson, Editor

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UniForum '97, April 12-14, 1997

Marjorie Richardson

Issue #38, June 1997

My trip to San Francisco to attend UniForum'97 was very satisfying as I got to
see two great luminaries of our time—the Hale-Bopp comet and Linus Torvalds.

My trip to San Francisco to attend UniForum'97 was very satisfying as I got to
see two great luminaries of our time—the Hale-Bopp comet and Linus Torvalds.
Hale-Bopp was visible in the pre-dawn sky on March 12 and 13. Linus was
visible at the Keynote speech on March 13 and was definitely the brighter of the
two.

The president of UniForum, Tom Mace, was present to welcome Linus, and
Douglas Michaels of SCO presented Linus with UniForum's Achievement Award.
The award itself is a clear, pyramid-shaped trophy, about which Linus said he
was pleased to have something “physical” to show for his work. Linus'
acceptance speech was brief and self-effacing as usual. He referred to himself
as the “spider at the center of the web” with many others working around him.
Tove and their 3 month old baby girl, Patricia Miranda, had accompanied Linus
and both tolerated my pushiness in taking pictures. After the keynote, Linus
and Tove made the rounds of the Exhibit Hall, visiting all their fans in the Linux
Pavilion. Tove confided that they were enjoying the weather (no snow), but that
the arrival of their furniture had been delayed by a bad storm that had forced
the ship back to Germany.

Mitchell Kertzman of Sybase gave a vibrant keynote speech that morning, in
which he ignored Linux as a possible factor in a paradigm shift that might
topple Microsoft. Perhaps he hasn't heard that Linus' goal is “world
domination”. Kertzman compared today's software industry to the automobile
industry of the fifties—that it is designing products to be obsolete in three
years, while consumers are wanting long term reliability. Sounds to me like
consumers are looking for Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

While 7000 people had pre-registered for UniForum, only about 75% of those
actually attended. Perhaps the others went to one of the competing shows
such as Internet World. At any rate, at times the floor was crowded with
attendees, while at other times (particularly toward the end of the day) it was
quite empty. The Linux Pavilion was placed in the right rear corner of the floor,
yet it seemed to me that most attendees were gravitating over to check out this
upstart operating system that dares to be freely available. SSC gave away their
stock of magazines and bumper stickers, as well as displaying T-shirts,
reference cards and the new “Tux” mugs. IBM and Lucent Technologies both
had central positions on the floor, but I saw many people passing them by to
visit Digital to check out both the Alpha and Jon “maddog” Hall's new Linux
setup for Digital's Intel box. Jon is providing us with a short article about this
setup that will appear next month.

I attended two of the talks: one on Electronic Document Interchange and one
on high speed Internet access. Both were well presented and full of good
information. I was particularly impressed with Jeff Wilbur's thoughts on the
directions that access to the Internet will take in the future (i.e., cable modems,
xDSL, satellite, ISDN), and so asked him for an article.

Since UniForum '97 was my first conference as Editor of Linux Journal, I met
many people I had only heard about before, including Joel Goldberg of
InfoMagic (who is a sponsor of Linux Gazette), Mark Bolzern of WGS, Adam
Richter of Yggdrasil, and of course, Jon “maddog” Hall of Digital. Jon introduced
me to Ted Cook of BRU, who told me of his plan to give away BRU software to
Linux User Groups at the upcoming Linux Expo and to groups that are
members of G.L.U.E. (http://www.ssc.com/glue/).

On Wednesday night Joanne Wagner, one of our advertising representatives,
and I attended a press conference/party put on by XiGraphics—free food and
drink, always a plus. The press conference was held to announce the recent
name change (from X Inside) and the latest release of Xi's Accelerated X
software. The president and founder of the company, Thomas Roell, gave a
short presentation in which he described the directions he envisions for Xi
Graphics.

All in all, I had a good time at the conference and a pleasant stay in San
Francisco.

Marjorie Richardson, Editor

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Traveling Linux: An Implementation Experience for

Unattended Management Applications

Maurizio Cachia

Issue #38, June 1997

Linux runs the trains in northeast Italy.

SAD operates in the local public transport field in an alpine area in the
Northeastern part of Italy. We spent several years constructing an integrated
payment system for all public transport operators (buses and trains) in our
region. We now manage this payment system using about 90 PCs running 2.0.x
Linux. As part of a new automatic vehicle location project, we plan to set up
special industrial PC systems with GPS (Global Positioning System) and radio for
data transfer on-board of every bus. On this Linux system, we implement
procedures for traffic and tariff control.

An Integrated Payment System

About two years ago the Provincia Autonoma di Bolzano (The Autonomous
Province of Bolzano—see sidebar) started to use a standardized payment

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

system that allows patrons to use one ticket for all methods of public
transportation, either on road or rail. This encouraged the setting up of an
integrated information system with the aim of standardized management of all
information obtained from statistical data about passengers and trips.

The system is based on the use of on-board electronic devices, with magnetic
technology, which were built by a Belgian company with international
experience in this field, and it required more than four years to completely set
up.

The service network is managed by 25 different companies with very different
needs and organizational models. In order to have standardized system
management we developed a single software model that can define its own
operational features, adapting to different conditions, and can integrate the
management procedures for the bookkeeping and operational control of the
principal companies.

The limits of the hardware features and the operational and development
system were taken for granted from the first steps of implementation. These
limits were apparent when it became necessary to merge the lines managed by
the Ferrovie dello Stato (National Railroad Company) into our system.

This integration required us to set up devices like those on board the vehicles in
37 rail stations. These systems run unattended; therefore, it is necessary to
have tele-diagnostic functions, remote updating and automatic data collection
available.

Linux on Rail

About the middle of 1993, our consultants told us about the existence of a
Unix-like operating system with source available on the Internet that had a
license policy similar to that of the Free Software Foundation.

Our introduction to Linux, at that time on the 0.98 release, excited us at once
because of its great stability and because the source was available if the need
arose to make modifications in order to develop our own projects. Thus, we
could implement an agreement with our current system house to obtain the
updated and tested Linux distributions and to develop the device drivers for
our not exactly standard devices. We modified the devices responsible for
running of the magnetic records, converting them back to their natural terminal
function, by which they are linkable to a personal computer through a strong
and reliable transmission file.

In the first months of 1993, we set up the devices inside the stations. After a
testing period and following the availability of the first 1.0.x Linux release
versions, the whole system was put into action.

Today, 90 systems are running overall:

• 40 wholly unattended inside the rail stations,
• 40 by the ticket windows in the most important stations of the country,

and
• 10 inside the bus depots, that read and collect data coming from the

buses through infrared transmissions.

Every unattended system consists of a black box set in a burglar-proof case that
contains a 486 33MHz PC with 16MB of RAM and a 150MB hard disk, a
minimum of four serial ports (UART 16550A), a V32bis or V34 modem and a
battery backup. To each black box are connected (in RS 485) from two to six
ticket obliteration units like those on the buses. These units now use Linux
release 2.0.2x (ELF version).

The average system uptime is now more than 100 days; some system crashes
still take place, probably because of particular environmental conditions. To
obviate this, we are testing a hardware watchdog in some places. The ticketing
systems are, of course, augmented by the presence of a monitor, a keyboard
and terminal connections needed for credit card treatment.

Every night the central system connects to all the terminals, via a Taylor UUCP,
for data collection and to start out some functions. Every week we use a PPP
connection to do the systems clock adjustment using ntpdate.

Linux on the Bus

The precise knowledge of the patronage mobility features is not enough to
solve every management problem of a bus company. In this industry
employees are spread throughout the land and can be reached for service
instructions only at particular times and at precise network points. Thus,
programming the employee and bus schedule ahead of time is important, but
does not allow for time lost in the work organization due to network problems,
accidents, organizational difficulties or unexpected demand changes.

Therefore, we did a survey on the checking methods and technologies used in
other countries. In general, these systems have been applied to the urban
services of mid-sized metropolitan areas. The check service ends at the border
of the suburbs, mostly because of the high investment costs needed for the

radio transmission equipment. Architectures are normally based on these
general features:

1. Almost all check intelligence to a central point that is able to process a
great quantity of data (in general, computers with real-time, special
operation systems);

2. Availability of a radio network with a great number of transmission
channels and widespread cover, using a polling transmission method with
every vehicle questioned to determine its position at very short time
intervals (in general, less than a minute);

3. In case of limited radio cover, integration with infrared active captor
systems or with passive markers to reach vehicles or to allow them to
correct their position;

4. The intelligence on-board is collected by devices with industrial electronics
features and proprietary technology based on a moderate capacity CPU.

In recent years, the check systems described above have made an evolutionary
jump following the availability of a location system, based on the GPS
technology, in the civil market. This system, although limited in very crowded
areas, simplifies the vehicle location electronic systems with a noticeable
increase in accuracy.

Based on the above experiences, the system project features were defined for
the intercity and urban services in the Provincia di Bolzano, which operate
under the following conditions:

• The control network covers a length of 2300 km, of which more than three
quarters is in an alpine area;

• The regulation and structural situation existing in the national spread of
radio frequencies does not allow a sufficient number of channels to
construct a polling system for the land in question;

• The existence of several different companies, with different organizational
structures, means there must be control models with very simple
features, but always consistent with a standard system management;
therefore, the overall system functionality can be linked to a single control
center that can define all relevant vehicles and send out operation
instructions;

• The existence of the magnetic payment system at its current development
level requires its integration inside a single on-board system that will allow
more developments and implementations as needed.

In this case, it seemed necessary to set up on every vehicle a knot of the
operation system that could develop, in strict autonomy, the production
management functions, while maintaining the overall integrity of the system

and requiring the least amount of resource spending. Functions had to be
modular—that is, put into action according to the needs of the company that
owns the vehicle and provides the service. Every vehicle must be able to
determine its own position, time and program consistency, without requiring a
constant link between vehicle and operation center.

Each working program change that could be foreseen for a vehicle and its
operator had to be described with a minimum of verbal communication, using
the same standards as the instructions of the central information system of the
company. The only solution that fulfills these requirements is a multitasking
operational environment that can be integrated with the company information
system (based on DG/UX 5.4.3, the implementation of Data General CO of Sys V
rel.4). The purchase of an Intel-based commercial system for more than 400
vehicles would require license investments of more than a hundred million lira.

Moreover, the need for non-standard features in the trade systems (particularly
terminal use, watchdog management and advanced power management)
might make it necessary to intervene at a system level, with all the possible
troubles between the software distributor (Italian) and the owner (American).

In this framework, Linux is the only operating system that works for our project.
The features we considered in Linux's favor are as follows:

1. System steadiness. With the 1.2.13 (and better in the stable 2.0) the
machine average uptime is much more than that for any of the other
widely circulating Unix systems for the Intel platform that we tested. (And
we tested almost all of them.)

2. Source code availability and quality. Many of our special needs are already
contained in the development version (i.e., power management,
watchdog, networking on radio net, etc.). The others will be met by either
modifying the source ourselves or through cooperation with Linux
developers.

3. Our management applications were born in a Unix environment. From
1980 until today, we had to face porting both to different architectures

and to different systems (Ultrix, BSD, SCO, Interactive, DG/UX). The porting
to Linux was the easiest and the most linear.

4. Linux is free. This was the most basic reason that helped us to persuade
our management that Linux was the system to use.

We finished the setting up phase of the automatic vehicle location system in
July, 1996. Following a European call for bids, Data General (Westboro, MA) was
selected as supplier for the on-board PCs. The technical specification for the
data transmission system had to be integrated into the already existing radio
network.

Each vehicle's equipment is composed of a 486/100MHz PC, with 16MB of RAM,
a 540MB hard disk, 10 RS232/422 serial ports, a SCSI controller and a type III
PCMCIIA. The same PC case (140 mm x 140 mm x 158 mm) also contains a GPS
Trimble differential system and an intelligent management unit that allows
programmed system ignition, environmental functional parameter control and
battery backup functions.

The systems were tested for very hard environmental conditions, since they
must function in temperature between -20 to +50 Celsius degrees, and be
shock resistant following military specifications (MIL-SPEC).

The PCs were linked with the current on-board terminals used for payment
system management (obliterators and issue console), the communication
equipment (radio or GSM, Global System for Mobile communications) and
special public information panels.

Our current operating system is Linux 2.0.25.

Maurizio Cachia lives in a little village in the Dolomiti Alps with his wife and a
funny golden retriever named Lu. He has worked since 1980 as a system
analyst in the Unix environment for the public transport companies. In 1984 he
became the Technical Manager of the Integrated Information System of SAD in
Bolzano. He can be reached by e-mail at mau@sad.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Booting the Kernel

Alessandro Rubini

Issue #38, June 1997

This article is a description of the steps required to boot the Linux kernel. While
this kind of information is not relevant to the system's functionality, it is
interesting to see how the different architectures bring up the system.

A computer system is a complex machine, and the operating system is an
elaborate tool that orchestrates hardware complexities to show a simple and
standardized environment to the end user. When the power is turned on,
however, the system software must boot the kernel and work in a limited
operating environment. I describe here the booting process of three platforms:
the old-fashioned PC and the more fully featured Alpha and SPARC platforms.
The PC is covered in more detail, since it is still in more widespread use than
other platforms, and also because it's the most tricky platform to bring up. No
code will be shown, as assembly language is unintelligible to most readers, and
each platform has its own.

The Computer at Power-On

In order to be able to use the computer when the power is turned on, the
processor begins execution from the system's firmware. The firmware is
“unmovable software” found in ROM; some manufacturers call it the Basic
Input-Output System (BIOS) to underline its software role, some call it PROM or
“flash” to stress its hardware implementation, while others call it “console” to
focus on user interaction.

The firmware usually checks the hardware's functionality, retrieves part (or all)
of the kernel from a storage medium and executes it. This first part of the
kernel must load the rest of itself and initialize the whole system. I don't deal
with firmware issues here with the kernel code, which is distributed with Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The PC

When the x86 processor is turned on, it is a 16-bit processor that sees only 1MB
of RAM. This environment is known as “real mode” and is dictated by
compatibility with older processors of the same family. Everything that makes
up a complete system must live within the available megabyte of address
space, i.e., the firmware, video buffers, space for expansion boards and a little
RAM (the infamous 640KB) must all be there.

To make things difficult, the PC firmware loads only half a kilobyte of code and
establishes its own memory layout before loading this first sector. Whatever
the boot media, the first sector of the boot partition is loaded into memory at
the address 0x7c00, where execution begins. What happens at 0x7c00 depends
on the boot loader being used; we examine three situations here: no boot-
loader, LILO, Loadlin.

Booting zImage and bzImage

Even though it's rare to boot the system without a boot loader, it is still possible
to do so by copying the raw kernel to a floppy disk. The command cat zImage >

/dev/fd0 works perfectly on Linux, although some other Unix systems can do
the task reliably only by using the dd command. Without going into detail, the
raw floppy image created by zImage can then be configured using the rdev

program.

The file called zImage is the compressed kernel image that resides in arch/i386/

boot after either make zImage or make boot is executed—the latter invocation
is the one I prefer, as it works unchanged on other platforms. If you built a “big
zImage” instead, the kernel file created is called bzImage and resides in the
same directory.

Booting an x86 kernel is a tricky task because of the limited amount of available
memory. The Linux kernel tries to maximize usage of the low 640 kilobytes by
moving itself around several times. Let's look at the steps performed by a
zImage kernel in detail; all of the following path names are relative to the arch/
i386/boot directory.

• The first sector (executing at 0x7c00) moves itself to 0x90000 and loads
subsequent sectors after itself, getting them from the boot device using
the firmware's functions to access the disk. The rest of the kernel is then
loaded to address 0x10000, allowing for a maximum size of half a
megabyte of data—remember, this is the compressed image. The boot
sector code lives in bootsect.S, a real-mode assembly file.

• Then code at 0x90200 (defined in setup.S) takes care of some hardware
initialization and allows the default text mode (video.S) to be changed.
Text mode selection is a compile-time option from 2.1.9 onwards.

• Later, all the kernel is moved from 0x10000 (64K) to 0x1000 (4K). This
move overwrites BIOS data stored in RAM, so BIOS calls can no longer be
performed. The first physical page is not touched because it is the so-
called “zero-page”, used in handling virtual memory.

• At this point, setup.S enters protected mode and jumps to 0x1000, where
the kernel lives. All the available memory can be accessed now, and the
system can begin to run.

The steps just described were once the whole story of booting when the kernel
was small enough to fit in half a megabyte of memory—the address range
between 0x10000 and 0x90000. As features were added to the system, the
kernel became larger than half a megabyte and could no longer be moved to
0x1000. Thus, code at 0x1000 is no longer the Linux kernel, instead the “gunzip”
part of the gzip program resides at that address. The following additional steps
are now needed to uncompress the kernel and execute it:

• head.S in the compressed directory is at 0x1000, and is in charge of
“gunzipping” the kernel; it calls the function decompress_kernel, defined
in compressed/misc.c, which in turns calls inflate which writes its output
starting at address 0x100000 (1MB). High memory can now be accessed,
because the processor is definitely out of its limited boot environment—
the “real” mode.

• After decompression, head.S jumps to the actual beginning of the kernel.
The relevant code is in ../kernel/head.S, outside of the boot directory.

The boot process is now over, and head.S (i.e., the code found at 0x100000 that
used to be at 0x1000 before introducing compressed boots) can complete
processor initialization and call start_kernel(). Code for all functions after this
step is written in C.

The various data movements performed at system boot are depicted in Figure
1.

Figure 1. System Boot Data Map

The boot steps shown above rely on the assumption that the compressed
kernel can fit in half a megabyte of space. While this is true most of the time, a
system stuffed with device drivers might not fit into this space. For example,
kernels used in installation disks can easily outgrow the available space. Some
new method is needed to solve the problem—this new method is called
bzImage and was introduced in kernel version 1.3.73.

A bzImage is generated by issuing make bzImage from the top level Linux
source directory. This kind of kernel image boots similarly to zImage, with a few
changes:

• When the system is loaded to address 0x10000, a little helper routine is
called after loading each 64K data block. The helper routine moves the
data block to high memory by using a special BIOS call. Only the newer
BIOS versions implement this functionality, and so, make boot still builds
the conventional zImage, though this may change in the near future.

• setup.S doesn't move the system back to 0x1000 (4K) but, after entering
protected mode, jumps instead directly to address 0x100000 (1MB) where
data has been moved by the BIOS in the previous step.

• The decompresser found at 1MB writes the uncompressed kernel image
into low memory until it is exhausted, and then into high memory after
the compressed image. The two pieces are then reassembled to the
address 0x100000 (1MB). Several memory moves are needed to perform
the task correctly.

The rule for building the big compressed image can be read from Makefile; it
affects several files in arch/i386/boot. One good point of bzImage is that when
kernel/head.S is called, it doesn't notice the extra work, and everything goes
forward as usual.

Using LILO

Most Linux-x86 users don't boot the raw kernel image from a floppy; instead
they boot LILO from the hard disk. LILO replaces part of the process outlined
above so that it can load a Linux kernel that is scattered throughout a disk. This
capability allows the user to boot a kernel file from a file system partition
without using the floppy.

In practice, LILO uses the BIOS services to load single sectors from the disk, and
then it jumps to setup.S. In other words, it arranges the memory layout in the
same way as bootsect.S; thus, the usual booting mechanism can complete
painlessly. LILO is also able to handle a kernel command line, and this is a good
reason by itself to avoid booting the raw kernel image.

If you want to boot a bzImage with LILO, you must use LILO version 18 or later.
Earlier versions of LILO are not able to load segments into high memory, an
ability that is needed when loading big images in order for setup.S to find the
expected memory layout.

The main disadvantage of LILO is that is uses the BIOS to load the system. This
forces the kernel and other relevant files into the first 1024 cylinders of disks to
be accessible to the BIOS. When using the PC firmware, you discover how old-
fashioned the architecture actually is.

Even if you don't run LILO, you can enjoy the documentation files distributed
with LILO's source code. They document the boot process on the PC and
explain how to handle (almost) every conceivable situation.

Using Loadlin

If you want to boot your operating system from another operating system,
Loadlin is the tool for you. This program is similar to LILO in that it loads the
kernel from a disk partition and then jumps to setup.S. It is different from LILO
in that it not only faces the BIOS restrictions, but also must dispose of an
established memory layout without compromising the system's stability. On the
other hand, Loadlin is not restricted to a half kilobyte length because it is a
complete program file, not a boot sector. Version 1.6 and later of Loadlin are
able to load big images.

Loadlin can pass a command line to the kernel and is, therefore, as flexible as
LILO. Most of the time, you'll write a linux.bat file to pass a full-featured
command line to Loadlin when calling the linux command.

Loadlin can be used to turn any networked PC into a Linux box. All that is
needed is a kernel image equipped for mounting the root partition via NFS,
Loadlin and a linux.bat containing the correct IP numbers. You need a properly
configured NFS server as well, but any Linux machine can fill that job. For
example, the following command line turns a PC (alfred.unipv.it) into a
workstation:

loadlin c:\zimage rw nfsroot=/usr/root/alfred \
nfsaddrs=193.204.35.117:193.204.35.110:193.204.35.254:255.255.255.0:alfred.unipv.it

More of It

The code is not as easy as I described—it must deal with a lot of details, such as
bringing around the kernel's command line, keeping an eye on the boot
technique being used, and so on. The curious reader can look in the source file
to learn more and to read the authors' comments. There's a lot of information
in the comments, and they are often funny to read.

I personally feel most users will never need to touch the boot code, because
things are much more interesting when the system is up and running. At those
times you can exploit all the features of your processor and all the available
RAM without going mad with processor-level issues.

Booting an Alpha

The Alpha platform is much more mature than the PC, and its firmware reflects
this maturity. My experience with Alpha is limited to the ARC firmware, which is
the most widely used.

After performing the usual detection of devices, the firmware displays a boot
menu that lets you choose which file to boot. The firmware can read a disk
partition (though only a FAT partition), so you actually boot a “file” without the
need to hack boot sectors and build maps of disk blocks.

The file booted is usually linload.exe, which in turn loads MILO (the “Mini
Loader”). In order to boot Linux through the ARC firmware, you must have a
small FAT partition on your hard drive to store linload.exe and milo files. The
Linux kernel doesn't need to access the partition unless you upgrade MILO, so
FAT support can be safely left out of your Alpha kernel.

Actually, the user can exploit different options. The ARC boot menu can be
configured to boot Linux by default, and MILO can be burnt in flash memory in

order to get rid of the FAT partition. However, whatever you do, you end up
with MILO running.

The MILO program is a stripped-down version of the Linux kernel. It has all of
the Linux device drivers and a file system decoder; unlike the kernel it doesn't
have process control and does include Alpha initialization code. This tool can
set up and enable virtual memory and can load a file from either an ext2
partition or an iso9660 device. The “file” in question is loaded to virtual address
0xfffffc0000300000 and then executed. This virtual address is also the one
where the Linux kernel runs; however, it's unlikely you'll ever load anything but
Linux. One exception is the fmu (“flash management utility”) program used to
burn MILO in flash ROM—fmu is compiled to execute from the same virtual
address whence the kernel runs, and it is distributed with MILO.

It's interesting to note that MILO also includes a small 386 emulator and some
of the PC BIOS functionality. This is needed in order to execute self-initialization
code found on many ISA/PCI peripheral boards (PCI boards, though claiming to
be processor-independent, use Intel machine code in their ROM images).

Since MILO does all of this, what is left to the Linux kernel?—very little, actually.
The first kernel code to execute in Linux-Alpha is arch/alpha/kernel/head.S, and
all it does is set up a few pointers and jump to start_kernel(). Actually, kernel/
head.S for Alpha is much shorter than the equivalent x86 source file.

If, for some reason, you don't wish to run MILO there is an alternative, though
not a practical one. In arch/alpha/boot you'll find the source for a “raw” loader
that is compiled by issuing make rawboot from the top level Linux source
directory. This utility can load a file from a sequential region of a device—either
floppy or hard disk—using the firmware's “call backs”.

In practice, the raw loader accomplishes a task similar to the one bootsect.S
performs for the PC platform—it forces a copy of the kernel to either a raw
floppy or a raw hard disk partition. There's no real reason to use this technique
—it is quite hairy and lacks the flexibility MILO offers. I personally don't know if
it still works; the “PALcode” used by Linux is exported by MILO and is different
from the one exported by the ARC firmware. The PALcode is a library of low-
level functions used by Alpha processors to implement low-level hardware
management like paging; if the current PALcode implements different
operations than the software expects, the system won't work.

Booting a SPARC Station

Bringing up a SPARC computer is similar to booting the Alpha on the user side,
and similar to booting the PC on the software side.

The user sees that the firmware loads and executes a program, which in turn is
able to retrieve and uncompress a file found on a disk partition. The “program”
in question is called SILO, and it can read files from either a ext2 or a ufs
partition. Unlike MILO (like LILO), SILO is able to boot another operating system.
There is no need for this ability on the Alpha, because the firmware can boot
multiple systems; once you run MILO, you have already made your choice (the
right choice—Linux).

When a SPARC computer boots, the firmware loads a boot sector after
performing all the hardware checks and device initialization. It's interesting to
note that Sbus devices are platform independent, and their initialization code is
portable Forth code rather than machine language bound to a particular
processor.

The boot sector loaded is what you find in /boot/first.b in your Linux-SPARC
system and is a bare 512 bytes. It is loaded to address 0x4000, and its role is
retrieving /boot/second.b from disk and writing it to address 0x280000 (2.5
MB); this address was chosen because the SPARC specifications state that at
least 3MB of RAM must be mapped at boot time.

The second-stage boot loader then does everything else. It is linked with
libext2.a to access system partitions and can thus load a kernel image from
your Linux file system. It can also uncompress the image, since it includes the
inflate.c routine from the gzip program.

The routine second.b accesses a configuration file called /etc/silo.conf, similar
in shape to lilo.conf. Since the file is read at boot time, there's no need to re-
install the kernel maps when a new kernel is added to the boot choices. When
SILO shows its prompt, you can choose any kernel image (or other operating
system) specified in the silo.conf file, or you can specify a complete device/path
name pair to load a different kernel image without editing the configuration
file.

SILO loads the disk file to address 0x4000. This means the kernel must be
smaller than 2.5MB; if it is larger, SILO will refuse to overwrite its own image.
No conceivable Linux-SPARC kernel currently exceeds that size, unless it was
compiled with -g to have debugging information available. In this case, the
kernel image must be stripped before being handed to SILO.

Finally, SILO performs kernel decompression and/or remapping to place the
image at virtual address 0xf0004000. The code that takes over after SILO is
finished is arch/sparc/kernel/head.S. The source includes all the trap tables for
the processor and the actual code to set the machine up and call start_kernel().
The SPARC version of head.S is quite big.

start_kernel and On

After architecture-specific initialization is complete, the init/main.c program
takes control of whichever processor you are using.

The start_kernel() function first calls setup_arch(), which is the last architecture-
specific function. Unlike other code, however, setup_arch() can exploit all the
processor's features and is a much easier source file to deal with than those
described earlier. This function is defined in the kernel/setup.c code under each
architecture source tree.

The start_kernel() function then initializes all the kernel's subsystems—IPC,
networking, buffer cache and so on. After all initialization is done, these two
lines complete the code:

kernel_thread(init, NULL, 0);
cpu_idle(NULL);

The init thread is process number 1: it mounts the root partition, executes /
linuxrc if CONFIG_INITRD has been selected at compile time, and then executes
the init program. If init can't be found, /etc/rc is executed. In general, using rc is
discouraged, since init is much more flexible than a shell script in handling
system configuration. As a matter of fact, version 2.1.21 of the kernel removed
the /etc/rc{/} option, making it obsolete. If neither init nor /etc/rc will run or if
they exit, /bin/sh is executed repeatedly (but 2.1.21 and later kernels will
execute it only once). This feature only exists as a safeguard in case the init file
is removed or corrupted by mistake. If you remove a.out support from the
kernel without recompiling your old init, you'll enjoy having at least a shell
running after reboot. The kernel has no more tasks to do after spawning
process number 1, and all other functions are handled in user space by init, /
etc/rc or /bin/sh. And process 0? The so called “idle” task executes cpu_idle(), a
function that calls idle() in an endless loop. idle() in turn is an architecture-
dependent function that is usually in charge of turning off the processor to save
power and increase the processor's lifetime.

Alessandro is a Linux enthusiast who writes
documentation because he's not smart enough to
write software. His 486 is specialized in grepping
through source code, and humbly leaves real jobs to
the Alpha and the SPARC. He can be reached via e-mail
at rubini@ipvvis.unipv.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #38, June 1997

Integra4 RDBMS for Linux, Clustor 1.0, BitWizard and more.

Integra4 RDBMS for Linux

Integra4, a relational database management system, has been announced by
Coromandel Software Ltd. Integra4 is compliant with ANSI SQL2. Some of its
features include: engine supporting referential integrity, stored procedures and
triggers, forms, 4GL application development and embedded SQL support.
There are also other tools developed around Integra4 which include Bankon,
RA, GIS tools and a portfolio management system. There is a special pricing
policy for the Linux Community.

Contact: Coromandel Software Ltd., N-505, North Block Read Wing, Manipal
Centre, Dickenson Road, Bangalore 560042, INDIA Phone: +91(80) 5585463,
Fax: +91(80) 5586415, E-mail: cosoft.developer@gems.vsno.net.in.

Clustor 1.0

Active Tools, Inc. announced the release of Clustor 1.0, a program for managing
large computational tasks. Clustor simplifies a common computationally
intensive activity—running the same program code numerous times with
different inputs. Clustor provides increased performance by distributing jobs
over a network of computers and improved task management through a
friendly user interface. Clustor 1.0 is currently available for several operating
systems, including Linux. Introductory prices range from $799-$1299 for
Clustor Root and $199-$299 for Clustor Node. Discounts for multiple copies are
available. Evaluation versions of Clustor can be downloaded from: http://
www.activetools.com/.

Contact: Active Tools Inc., 246 First St., Suite 310, San Francisco, CA 94105
Phone: (415) 882- 7062, Fax: (415) 680-2369, E-mail: info@activetools.com, URL:
http://www.activetools.com/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

BitWizard

BitWizard is pleased to announce that it is starting a Linux device driver service.
This means you can concentrate on creating PC-based systems, and BitWizard
will make the required device drivers for the cards you select. The driver will be
ready within a week or two after BitWizard gets the hardware and the
documentation. For price quotes contact BitWizard.

Contact: BitWizard, Phone: +31-70-3700841 or +31-654-727520, E-mail:
R.E.Wolff@BitWizard.nl, URL: http.//BitWizard.nl/.

Hitachi MP-EG1A

Hitachi will soon have MPEG Cameras available for evaluation and review. This
is a point-and-shoot camera. The MPEG Cam features include: MPEG movies,
shoot and store 3000 JPEG images, and digital audio. The system requires a
multimedia PC with a Pentium 100Mhz or faster, 16MB RAM, 8MB available on
hard disk, and a CD-ROM with speakers or headphones. The cost of the MPEG
Camera is $2,499.95.

Contact: MPEG Cam Network Webmaster, Phone: (305)443-7973, Fax: (305)
447-0745, E-mail: Rob@QuantumLeap.net, URL: http://www.MPEGCam.net/.

LinkSca

Electronic Software Publishing Corporation announced LinkScan, the first
commercially available link checker that operates on Unix servers. Designed to
work on both Internet and Intranet servers, LinkScan can test over 30,000 links
per hour because it uses multi-threaded simultaneous processing. For a web
site, LinkScan offers the following features: Scans for missing HTML documents,
images and other files; validates all internal hyperlinks; checks all name tags
and references, creates two types of site maps or table of contents suitable for
publication and discovers orphaned files. The price for personal use is $49.95
each. A license is required for each server on which the product is used.

Contact: Electronic Software Publishing Corporation, 1504 #8-00200 Main
Street, Gardnerville, NV 89410-5273, E-mail: linkscan@elsop.com, URL: http://
www.elsop.com/.

Pixel!FX Version 5.1

Mentalix Inc. announced the availability of Pixel!FX Version 5.1. Additionally, the
entire Pixel!FX Version 5.1 suite of products is now available for Linux users.
Mentalix has also released a new version of its Pixel!SCAN Photoshop Plug-In,
which provides scanning functionality for users of Adobe Photoshop for Unix.

Pixel!OCR 5.1 builds on the capabilities of previous versions with its multiple
OCR engine technology. Certain modules may be purchased separately, or
users may choose the entire, end-to-end imaging suite in one product, Pixel!FX
Deluxe.

Contact: Mentalix 1700 Alma Drive, Suite 110, Plano, Texas 75075, Phone:
972-423-9377, Fax: 972-423-1145, E-mail: info@mentalix.com, URL: http://
www.mentalix.com/.

JClass Chart

KL Group Inc. announced the launch of JClass Chart. JClass Chart is a Java Bean
component that enables Java developers to embed sophisticated graphs and
charts into applications and applets quickly and easily. JClass Chart joins JClass
BWT and JClass LiveTable Pro in KL's Java component offerings. Some features
include: rotation and scaling capabilities, flat files and sockets, and axes
andlabels for easy development. The cost of the JClass Chart is $399 and the
Chart Source is $999.

Contact: KL Group Inc. 260 King Street East, Toronto, Ontario Canada M5A 1K3,
Phone: 800-663-4723, Fax: 416-594-1919, E-mail: info@klg.com, URL: http://
www.klg.com.jclass/chart/.

Internet/Intranet Design Shop

Boomerang Software announced the Internet/Intranet Design Shop. The
program integrates a WYSIWYG HTML document processor, graphics editor,
photo editor, business graphics and presentation creator, a clip art manager
and a calendar generator. A free trial version is available for downloading from
the company's web site at http://www.mosaiccom.com/.

Contact: Boomerang Software, Phone: 617-489-3000, E-mail:
info@mosaiccom.com, URL: http://www.boomerangsoftware.com/.

Velocis Database Server

Raima Corporation announced it is now offering Velocis Database Server.
Velocis is a client/server database management system for the Linux operating
system. Velocis supports multiple database models. Velocis offers SQL C-API so
developers and end users can use an industry standard interface for
manipulating and controlling the database. It also enables developers to
partition their applications using Server Extensions, which allow application
code to be hosted directly against the database server.

Contact: Raima Corporation, 4800 Columbia Center, 701 Fifth Ave., Seattle WA
98104, Phone: 800-327-2462, 206-515-9477, Fax: 206-748-5200,URL: http://
www.raima.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #38, June 1997

Our experts answer your technical questions.

Deleting User Accounts

I want to delete a user account. But I can't find any command to do so. Is there
any utility to do so? —Harry Wong

A Simple Process

Many of the Linux distributions ship with a deluser or userdel command that
reverses the action of the adduser or useradd command. Search the man
pages or simply try the commands to see if they exist on your system.

Failing that, deleting a user consists of two main steps:

1) Delete the user's entry in /etc/passwd

As root, and using your favorite editor, edit /etc/passwd (I always make a
backup copy before messing with the password file because you can never be
too careful). Search for the line that starts with the users login ID and delete the
entire line.

2) Delete the user's home directory.

Again as root, use the rm command recursively to get rid of files by typing —
Vince Waldon vwaldon@redcross.ca

Using MD

I have just added four additional drives to my Linux/Compaq Proliant 1000. I
recompiled the kernel to include the md/linear option. Now I cannot find any
instructions on how to make the MD work with all the drives. What I want to do

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

is have all five drives connected such that when the first drive is full, the data
will go to the second drive and so on. —Robert Binz

Getting Help with MD

More information on using MD can be found in the MD FAQ at ftp://sweet-
smoke.ufr-info-p7.ibp.fr/pub/linux/. You should find two files. The first, md-

FAQ, can answer many of your questions. The second, md035.tar.gz (this is the
current version of MD at the time of this writing), contains the utilities you will
need to manage your MD system, as well as more documentation.

Be aware the MD package is still under development. Certain parts of the
system (such as mirroring) are not yet considered stable. If you plan to use MD,
I recommend you join the mailing list by sending mail to
majordomo@vger.rutgers.edu with the message body “subscribe linux-raid”. —
Chad Robinson, BRT Technical Services Corporation chadr@brttech.com

Restricting Users to FTP Access

I need to create a captive account which restricts the user to only FTP access of
the system. I also need to restrict the user to accessing only directories above a
root directory I specify. Can you please let me know how to implement this? —
Steve Stuczynski

Creating Guest Groups

First add a guest group entry in the /etc/ftpaccess file. Specify which group of
users will be treated as guests by typing guestgroup ftponly. Then create the
ftponly entry in /etc/group by typing ftponly::22:. Next, create a user member of
this group, with no shell, in /etc/passwd:

user1:the_passwd:22:22:Limited FTP user:/home/ftp/user1:/bin/true

Don't forget to create the /home/ftp/user1 directory. Last, add /bin/true in /etc/

shells. Now check your work to make sure it works! —Pierre Ficheaux, Lectra
Systemes pierre@rd.lectra.fr

Secure FTP

There are simple and complex ways to restrict user access to FTP only. There is
a HOWTO that describes this in detail, as well as potential security problems
you should be aware of.

This FAQ is unfortunately not an official part of the Linux HOWTO and mini-
HOWTO compilation, but Slackware users can find it as part of the installation
anyway, in /usr/doc/faq/howto/mini/Anon-FTP-FAQ. Although the document is

geared primarily towards creating a secure anonymous FTP site, it actually
covers an extensive range of the setup required for your desired effect. —Chad
Robinson, BRT Technical Services Corporation chadr@brttech.com

Changing Configuration Settings

After a successful installation of Red Hat's Colgate release of Linux, I have found
I would like to change some of my configuration settings. Is there a way to get
back into the setup utility that steps you through setup? Or is there an easier
way of doing this? In particular, my NIC is not working right and I don't know
how to configure it correctly. —Jeff L. LaPlante

Using Control Panel

You need to use the control panel. It is an X-based set of utilities. The control
panel will start automatically if you do a startx as root, or you can do a su, set
your DISPLAY environment variable, and then run control-panel. In particular
you want to run the Network Configurator (netcfg) and possibly the Kernel
Configurator —Donnie Barnes, Red Hat Software redhat@redhat.com

Changing g++ Filenames

How can I change the name of the output file after compiling my source code
with g++? I don't have the manual entry for this command. —Kennie Jose Cruz

Renaming Executables With -o

To change the name of an executable created by g++ or gcc, use the following
command: —Rafael Rodrigues Obelhei roobelix@mikrus.com.br

Info Files and Man Pages for gcc

You can find this information in the gcc info files which should be accessible by
typing info gcc, or in a shorter version by typing —Ralf Stephan

Keeping Track of Version Changes

Where can I find out what changed between Linux kernel versions? —Koen
Rosseau

The Kernel Change Summary

Check out the Kernel Change Summary at ftp://ftp.shout.net/pub/users/mec/
kcs/. This covers the 1.3, 2.0, and 2.1 series kernels. —Matt Hartley
hartlw@rpi.edu

Xterm Error Message

When trying to run xterm under X, I get the error message no ptys available. I
have used Slackware in the past and have never had a problem with xterm
before. —Thomas Granger

Restoring Device Files

Most likely some of your pty device files got messed up. Check in /dev and
restore them with mknod or —Bert Vermeulen bert@terra.cnct.com

Finding bootp

Where do I find a bootp server software and directions on how to install it? —
Carl Fritch

Check Man Pages

Any Linux distribution should come with a bootpd (probably either /usr/sbin/
bootpd or /usr/sbin/in.bootpd) and a man page for it. —Steven Pritchard,
Southern Illinois Linux Users Group steve@silug.org

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/038/toc038.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Who Is at the Door: The SYN Denial of Service
	Douglas L. Stewart
	P. Tobin Maginnis
	Thomas Simpson
	Introduction
	Network Layers
	SYN Protocol by Analogy
	The Transport Station
	The SYN Attack
	A Case Study
	Solutions
	Conclusion

	Network Management & Monitoring with Linux
	David Guerrero
	What's SNMP?
	Dealing with Security
	What's the MIB?
	What's the Future of SNMP?
	SNMP with Linux
	MRTG: Multi Router Traffic Grapher
	Router Interface Output Tree
	Other programs
	Conclusions

	Ghosting onto the Net
	Scott Steadman
	Background
	Linux Installation
	Setting Up the PPP Daemon
	Setting up the Dialer Daemon
	Testing the Dialer Daemon
	Create an Appear Script
	A Note about Windows 95 Configuration
	Conclusion

	Consistent Keyboard Configuration
	John F. Bunch
	Definitions
	Keypress Events
	BACKSPACE,
DELETE and ALT
	Linux Kernel
	X Window System
	Xterm
	Bash
	Less
	Netscape and Minicom
	Emacs
	Summary

	Wabi: Caldera's Solution for Windows Applications
	Dwight L. Johnson

	OSS/Linux Sound Driver
	Jeff Tranter
	Installation
	Testing
	SoftOSS
	Evaluation
	Improvements
	Conclusions

	Linux in a Nutshell
	Sid Wentworth

	Programming with GNU Software
	Randyl Britten
	Using GNU Tools
	Compiling with gcc
	Debugging with gdb
	Building Programs with make
	Managing Source with RCS
	Profiling with gprof
	Conclusion

	Using mSQL in a Web-Based Production Environment
	B. Scott Burkett
	Requirements
	Obtaining the mSQL Package
	Installation and Compilation
	Testing
	Setting up mSQL for Use with the Web
Project
	Web-Based Interaction with w3-msql

	Creating a Multiple Choice Quiz System, Part 2
	Reuven M. Lerner
	Checking for Errors
	Creating the Quiz File

	Marketsmith
	Doc Searls
	Wired Wants to Fertilize
Your Inner Potato

	Letters to the Editor
	Various
	Where is the E-mail Address?
	Polygon Code
	Author Responds
	No Dialtone on Modem
	MostlyLinux
	Craftwork Solutions
	Data is Our Life
	File Locking Services
	Security Issues
	On-Line Linux Users Group

	LG and IELG
	Marjorie Richardson

	UniForum '97, April 12-14, 1997
	Marjorie Richardson

	Traveling Linux: An Implementation Experience for Unattended Management Applications
	Maurizio Cachia
	An Integrated Payment System
	Linux on Rail
	Linux on the Bus

	Booting the Kernel
	Alessandro Rubini
	The Computer at Power-On
	The PC
	Booting zImage and bzImage
	Using LILO
	Using Loadlin
	More of It
	Booting an Alpha
	Booting a SPARC Station
	start_kernel and On

	New Products
	Amy Kukuk
	Integra4 RDBMS for Linux
	Clustor 1.0
	BitWizard
	Hitachi MP-EG1A
	LinkSca
	Pixel!FX Version 5.1
	JClass Chart
	Internet/Intranet Design Shop
	Velocis Database Server

	Best of Technical Support
	Various
	Deleting User Accounts
	A Simple Process
	Using MD
	Getting Help with MD
	Restricting Users to FTP Access
	Creating Guest Groups
	Secure FTP
	Changing Configuration Settings
	Using Control Panel
	Changing g++ Filenames
	Renaming Executables With -o
	Info Files and Man Pages for gcc
	Keeping Track of Version Changes
	The Kernel Change Summary
	Xterm Error Message
	Restoring Device Files
	Finding bootp
	Check Man Pages

